Respiratory disease and diarrhea are the 2 most common diseases that result in the use of antimicrobial drugs in preweaned calves. Because the use of drugs in food animals, including dairy calves, has the potential for generating cross-resistance to drugs used in human medicine, it is vital to propose farm practices that foster the judicious use of antimicrobials while assuring animal health and productivity. The objective of this study was to use dairy farm calf treatment records to identify antimicrobial drug treatments in calves and to evaluate their effects on the prevalence of antimicrobial-resistant Escherichia coli from rectal swabs of preweaned dairy calves. Eight farms from central New York participated in the study, 3 farms using individual pen housing management and 5 farms using group pen housing management. Eligible study farms could not add antimicrobial drugs to the milk fed to preweaned calves and were required to have farm records documenting antimicrobial drug treatment of calves from birth to weaning. Three fecal E. coli isolates per calf were tested for susceptibility to 12 antimicrobial drugs using a Kirby-Bauer disk diffusion assay. A total of 473 calves were sampled, from which 1,423 commensal E. coli isolates were tested. Of the 9 antimicrobial drugs used on study farms, only enrofloxacin was significantly associated with reduced antimicrobial susceptibility of E. coli isolates, although treatment with ceftiofur was associated with reduced susceptibility to ceftriaxone. The median numbers of days from treatment with ceftiofur and enrofloxacin to rectal swab sampling of calves were 16 d (range: 1–39) and 12 d (range: 6–44), respectively. At the isolate level, treatment with enrofloxacin resulted in odds ratios of 2 [95% confidence interval (CI): 1–4] and 3 (95% CI: 2–6), respectively, for isolation of nonsusceptible E. coli to nalidixic acid and ciprofloxacin compared with calves not treated with enrofloxacin. Treatment with ceftiofur resulted in an odds ratio of 3 (95% CI: 0.9–12) for isolation of nonsusceptible E. coli to ceftriaxone compared with calves not treated with ceftiofur. Treatment with enrofloxacin resulted in selection of isolates that presented phenotypic resistance to both ciprofloxacin and ceftriaxone. Treatment with ceftiofur resulted in a higher prevalence of isolates resistant to ≥3 antimicrobial drugs (97%) compared with no treatment with ceftiofur (73%). These findings reinforce the necessity for continued implementation of practices at the dairy farm that support the sustainable and judicious use of antimicrobial drugs in dairy calves.
Group housing of preweaned dairy calves is a growing practice in the United States. The objective of this practice is to increase the average daily gain of calves in a healthy and humane environment while reducing labor requirements. However, feeding protocols, commingling of calves, and occurrence of disease in different calf-housing systems may affect the prevalence of antimicrobial drug-resistant bacteria. This study evaluated the effect of a group pen-housing system and individual pen-housing system on antimicrobial resistance trends in fecal Escherichia coli of preweaned dairy calves and on the prevalence of environmental Salmonella. Twelve farms from central New York participated in the study: 6 farms using an individual pen-housing system (IP), and 6 farms using a group pen-housing system (GP). A maximum of 3 fecal E. coli isolates per calf was tested for susceptibility to 12 antimicrobial drugs using a Kirby-Bauer disk diffusion assay. Calves in GP had a significantly higher proportion of E. coli resistant to ciprofloxacin and nalidixic acid, whereas calves in IP had a significantly higher proportion of E. coli resistant to ampicillin, ceftiofur, gentamycin, streptomycin, and tetracycline. Calf-housing system had an effect on resistance to individual antimicrobial drugs in E. coli, but no clear-cut advantage to either system was noted with regard to overall resistance frequency. No outstanding difference in the richness and diversity of resistant phenotypes was observed between the 2 calf-housing systems.
Background Amoxicillin plus ceftriaxone combination therapy is now standard of care for enterococcal endocarditis. Due to amoxicillin instability in infusion devices, benzylpenicillin plus ceftriaxone may be substituted to facilitate outpatient parenteral antimicrobial therapy (OPAT) delivery, despite lack of guideline endorsement. Objectives To assess the clinical efficacy of benzylpenicillin plus ceftriaxone for the management of enterococcal endovascular infections, in addition to assessing this combination’s in vitro synergy. Patients and methods Retrospective cohort study assessing unplanned readmissions, relapses and mortality for 20 patients with endovascular Enterococcus faecalis infections treated with benzylpenicillin plus ceftriaxone delivered via OPAT. For a subset of isolates, synergism for both amoxicillin and benzylpenicillin in combination with ceftriaxone was calculated using a chequerboard method. Results Patients had endovascular infections of native cardiac valves (n = 11), mechanical or bioprosthetic cardiac valves (n = 7), pacemaker leads (n = 1) or left ventricular assistant devices (n = 1). The median duration of OPAT was 22 days, and the most frequent antimicrobial regimen was benzylpenicillin 14 g/day via continuous infusion and ceftriaxone 4 g once daily via short infusion. Rates of unplanned readmissions were high (30%), although rates of relapsed bacteraemia (5%) and 1 year mortality (15%) were comparable to the published literature. Benzylpenicillin less frequently displayed a synergistic interaction with ceftriaxone when compared with amoxicillin (3 versus 4 out of 6 isolates). Conclusions Lower rates of synergistic antimicrobial interaction and a significant proportion of unplanned readmissions suggest clinicians should exercise caution when treating enterococcal endovascular infection utilizing a combination of benzylpenicillin and ceftriaxone via OPAT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.