Selective UV sensitivity was observed in Metal-Oxide-Semiconductor structures with Si nanoclusters. Si nanocrystals and amorphous Si nanoparticles (a-Si NPs) were obtained by furnace annealing of SiOx films with x = 1.15 for 60 min in N2 at 1000 and 700 °C, respectively. XPS and TEM analysis prove phase separation and formation of Si nanocrystals in SiO2, while the a-Si NPs are formed in SiO1.7 matrix. Both types of structures show selective sensitivity to UV light; the effect is more pronounced in the structure with nanocrystals. The responsivity of the nanocrystal structure to 365 nm UV light is ~ 4 times higher than that to green light at 4 V applied to the top contact. The observed effect is explained by assuming that only short wavelength radiation generates photocarriers in the amorphous and crystalline nanoclusters.
The alloys between a transition metal and a rare earth present magnetic and magneto optical properties of exceptional interest for the production of magnetic devices for information storage. In this work we report the magnetic and structural properties, obtained by Mössbauer spectrometry (MS) and X-ray diffraction (XRD), of Tb 0.257−x Nd x Fe 0.743 alloys with x=0 and 0.257 prepared by mechanical alloying during 12, 24 and 48 h, to study the influence of the milling time in their magnetic and structural properties. The Xrays results show for all the samples that the α-Fe and an amorphous phase are always present. The first decreases and the second increases with the increase of the milling time. Mössbauer results show that the amorphous phase in samples with Nd is ferromagnetic and appears as a hyperfine field distribution and a broad doublet, and that as the milling time increases the paramagnetic contribution increases. For samples with Tb the amorphous phase is paramagnetic and appears as a broad doublet which increases with the milling time and for 48 h milling it appears an additional broad singlet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.