Duck hepatitis B virus (DHBV) obtained from the serum of congenitally infected ducks was used to infect primary duck hepatocyte cultures 1 to 4 days after plating. Virus replication was demonstrated by the appearance, beginning at 2 days after infection, of intracellular covalently closed-circular and single-stranded DHBV DNA replicative intermediates which were not present in the inoculating virus preparation. With increasing time after infection there was further amplification of intracellular relaxed circular, covalently closed-circular, and single-stranded DHBV DNA. Cultures of primary duck hepatocytes are competent for infection with DHBV only during the first 4 days of culture. Synthesis of DHBV core antigen and DHBV surface antigen was detected by imnmunofluorescence in 10% of the hepatocytes in culture. De novo synthesis and release of infectious virus was also demonstrated. Therefore, all stages of viral replication were carried out by these experimentally infected primary hepatocyte cultures. This system makes it possible to study DHBV replication in vitro.
The invertebrate cytolysin lysenin is a member of the aerolysin family of pore-forming toxins that includes many representatives from pathogenic bacteria. Here we report the crystal structure of the lysenin pore and provide insights into its assembly mechanism. The lysenin pore is assembled from nine monomers via dramatic reorganization of almost half of the monomeric subunit structure leading to a β-barrel pore ∼10 nm long and 1.6–2.5 nm wide. The lysenin pore is devoid of additional luminal compartments as commonly found in other toxin pores. Mutagenic analysis and atomic force microscopy imaging, together with these structural insights, suggest a mechanism for pore assembly for lysenin. These insights are relevant to the understanding of pore formation by other aerolysin-like pore-forming toxins, which often represent crucial virulence factors in bacteria.
Duck hepatitis B virus (DHBV) DNA synthesis in congenitally infected ducks is inhibited by 2'deoxycarbocyclic guanosine (2'-CDG). Three months of therapy reduces the number of infected hepatocytes at least 10-fold (W.
The amino acid composition of the major duck hepatitis B virus (DHBV) core particle proteins was determined. The results of this analysis indicated that cores are composed of a single major protein that initiates translation from the second available AUG in the DHBV core gene. Proteins isolated from core particles purified from the cytoplasm of DHBV-infected duck hepatocytes exhibited heterogeneity in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, independent of the stage of viral DNA maturation. Incubation of native cores with alkaline phosphatase removed this heterogeneity, indicating that phosphorylation of external amino acids was responsible. Core protein isolated from mature DHBV purified from serum of infected animals did not display heterogeneity, suggesting a possible role for dephosphorylation in virus maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.