We present CO(2−1) and adjacent continuum observations of seven nearby radio-quiet type-2 quasars (QSO2s) obtained with ALMA at ∼0.2″ resolution (370 pc at z ∼ 0.1). These QSO2s are luminous (L[OIII] > 108.5 L⊙ ∼ MB < −23), and their host galaxies massive (M* ∼ 1011 M⊙). The CO morphologies are diverse, including disks and interacting systems. Two of the QSO2s are red early-type galaxies with no CO(2–1) detected. In the interacting galaxies, the central kiloparsec contains 18–25% of the total cold molecular gas, whereas in the spirals it is only ∼5–12%. J1010+0612 and J1430+1339 show double-peaked CO flux maps along the major axis of the CO disks that do not have an optical counterpart at the same angular resolution. Based on our analysis of the ionized and molecular gas kinematics and millimeter continuum emission, these CO morphologies are most likely produced by active galactic nucleus (AGN) feedback in the form of outflows, jets, and/or shocks. The CO kinematics of the QSO2s with CO(2−1) detections are dominated by rotation but also reveal noncircular motions. According to our analysis, these noncircular motions correspond to molecular outflows that are mostly coplanar with the CO disks in four of the QSO2s, and either to a coplanar inflow or vertical outflow in the case of J1010+0612. These outflows represent 0.2–0.7% of the QSO2s’ total molecular gas mass and have maximum velocities of 200–350 km s−1, radii from 0.4 to 1.3 kpc, and outflow mass rates of 8–16 M⊙ yr−1. These outflow properties are intermediate between those of the mild molecular outflows measured for Seyfert galaxies and the fast and energetic outflows shown by ultra-luminous infrared galaxies. This suggests that it is not only AGN luminosity that drives massive molecular outflows. Other factors such as jet power, coupling between winds, jets, and/or ionized outflows and the CO disks, and amount or geometry of dense gas in the nuclear regions might also be relevant. Thus, although we do not find evidence for a significant impact of quasar feedback on the total molecular gas reservoirs and star formation rates, it appears to be modifying the distribution of cold molecular gas in the central kiloparsec of the galaxies.
Radio AGNs with intermediate radio powers are capable of driving multi-phase outflows in galaxy bulges, and are also more common than their high-radio-power counterparts. In-depth characterisation of the typical host galaxies and likely triggering mechanisms for this population is therefore required in order to better understand the role of radio AGN feedback in galaxy evolution. Here, we use deep optical imaging data to study the detailed host morphologies of a complete sample of 30 local radio AGNs with high-excitation optical emission (HERG) spectra and intermediate radio powers (z < 0.1; 22.5 < log(L 1.4GHz ) < 24.0 W Hz −1 ). The fraction of hosts with morphological signatures of mergers and interactions is greatly reduced compared to the 2 Jy radio-powerful galaxies (log(L 1.4GHz ) > 25.0 W Hz −1 ) with strong optical emission lines: 53 ± 9 per cent and 94 ± 4 per cent, respectively. In addition, the most radiopowerful half of the sample has a higher frequency of morphological disturbance than the least radio-powerful half (67 ± 12 per cent and 40 ± 13 per cent, respectively), including the eight most highly-disturbed galaxies. This suggests that the importance of triggering nuclear activity in HERGs through mergers and interactions reduces with radio power. Both visual inspection and detailed light profile modelling reveal a mixed population of early-type and late-type morphologies, contrary to the massive elliptical galaxy hosts of radio-powerful AGNs. The prevalence of late-type hosts could suggest that triggering via secular, disk-based processes has increased importance for HERGs with lower radio powers (e.g. disk instabilities, large scale bars).
Radio-loud active galaxies have two accretion modes [radiatively inefficient (RI) and radiatively efficient (RE)], with distinct optical and infrared signatures, and two jet dynamical behaviours, which in arcsec- to arcmin-resolution radio surveys manifest primarily as centre- or edge-brightened structures [Fanaroff-Riley (FR) class I and II]. The nature of the relationship between accretion mode and radio morphology (FR class) has been the subject of long debate. We present a comprehensive investigation of this relationship for a sample of 286 well-resolved radio galaxies in the LOFAR Two-metre Sky Survey Deep Fields (LoTSS-Deep) first data release, for which robust morphological and accretion mode classifications have been made. We find that two-thirds of luminous FRII radio galaxies are RI, and identify no significant differences in the visual appearance or source dynamic range (peak/mean surface brightness) of the RI and RE FRIIs, demonstrating that both RI and RE systems can produce FRII structures. We also find a significant population of low-luminosity FRIIs (predominantly RI), supporting our earlier conclusion that FRII radio structures can be produced at all radio luminosities. We demonstrate that in the luminosity range where both morphologies are present, the probability of producing FRI or FRII radio morphology is directly linked to stellar mass, while across all morphologies and luminosities, RE accretion occurs in systems with high specific star formation rate, presumably because this traces fuel availability. In summary, the relationship between accretion mode and radio morphology is very indirect, with host-galaxy environment controlling these two key parameters in different ways.
Investigation of the triggering mechanisms of radio AGN is important for improving our general understanding of galaxy evolution. In the first paper in this series, detailed morphological analysis of high-excitation radio galaxies (HERGs) with intermediate radio powers suggested that the importance of triggering via galaxy mergers and interactions increases strongly with AGN radio power and weakly with optical emission-line luminosity. Here, we use an online classification interface to expand our morphological analysis to a much larger sample of 155 active galaxies (3CR radio galaxies, radio-intermediate HERGs and Type 2 quasars) that covers a broad range in both 1.4 GHz radio power and [OIII]λ5007 emission-line luminosity. All active galaxy samples are found to exhibit excesses in their rates of morphological disturbance relative to 378 stellar-mass- and redshift-matched non-active control galaxies classified randomly and blindly alongside them. These excesses are highest for the 3CR HERGs (4.7 σ) and Type 2 quasar hosts (3.7 σ), supporting the idea that galaxy mergers provide the dominant triggering mechanism for these subgroups. When the full active galaxy sample is considered, there is clear evidence to suggest that the enhancement in the rate of disturbance relative to the controls increases strongly with [OIII]λ5007 emission-line luminosity but not with 1.4 GHz radio power. Evidence that the dominant AGN host types change from early-type galaxies at high radio powers to late-type galaxies at low radio powers is also found, suggesting that triggering by secular, disk-based processes holds more importance for lower-power radio AGN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.