During the Triassic collision of the Yangtze and Sino‐Korean cratons, the leading edge of the Yangtze crust subducted to mantle depths and was subsequently exhumed as a penetratively deformed, coherent slab capped by a normal shear zone. This geometry requires a reverse shear zone at the base of the slab, and we suggest that the Yangtze foreland fold‐and‐thrust belt constitutes this zone. Lower Triassic rocks of the eastern foreland record NW–SE compression as the oldest compressional stress field; onset of related deformation is indicated by Middle Triassic clastic sedimentation. Subsequent Jurassic stress fields show a clockwise change of compression directions. Based on nearly coeval onset and termination of deformation, and on a common clockwise change in the principal strain/stress directions, we propose that the foreland deformation was controlled by the extrusion of the ultra high‐pressure slab. Widespread Cretaceous–Cenozoic reactivation occurred under regional extension to transtension, which characteristically shows a large‐scale clockwise change of the principal extension directions during the Lower Cretaceous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.