Abstract-This paper presents and compares two methods of tracking the beat in musical performances, one based on a Bayesian decision framework and the other a gradient strategy. The techniques can be applied directly to a digitized performance (i.e., a soundfile) and do not require a musical score or a MIDI transcription. In both cases, the raw audio is first processed into a collection of "rhythm tracks" which represent the time evolution of various low-level features. The Bayesian approach chooses a set of parameters that represent the beat by modeling the rhythm tracks as a concatenation of random variables with a patterned structure of variances. The output of the estimator is a trio of parameters that represent the interval between beats, its change (derivative), and the position of the starting beat. Recursive (and potentially real time) approximations to the method are derived using particle filters, and their behavior is investigated via simulation on a variety of musical sources. The simpler method, which performs a gradient descent over a window of beats, tends to converge more slowly and to undulate about the desired answer. Several examples are presented that highlight both the strengths and weaknesses of the approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.