Magnetic resonance images of the lungs of a guinea pig have been produced using hyperpolarized helium as the source of the MR signal. The resulting images are not yet sufficiently optimized to reveal fine structural detail within the lung, but the spectacular signal from this normally signal-deficient organ system offers great promise for eventual in vivo imaging experiments. Fast 2D and 3D GRASS sequences with very small flip angles were employed to conserve the norenewable longitudinal magnetization. We discuss various unique features associated with performing MRI with hyperpolarized gases, such as the selection of the noble gas species, polarization technique, and constraints on the MR pulse sequence.
Two healthy volunteers who had inhaled approximately 0.75 L of laser-polarized helium-3 gas underwent magnetic resonance imaging at 1.5 T with fast gradient-echo pulse sequences and small flip angles ( < 10 degrees). Thick-section (20 mm) coronal images, time-course data (30 images collected every 1.8 seconds), and thin-section (6 mm) images were acquired. Subjects were able to breathe the gas (12% polarization) without difficulty. Thick-section images were of good quality and had a signal-to-noise ratio (S/N) of 32:1 near the surface coil and 16:1 farther away. The time images showed regional differences, which indicated potential value for quantitation. High-resolution images showed greater detail and a S/N of approximately 6:1.
The authors imaged the lungs of live guinea pigs with hyperpolarized (HP) helium-3 as a magnetic resonance (MR) signal source. HP He-3 gas produced through spin exchange with rubidium metal vapor was delivered through an MR-compatible, small-animal ventilator. Two- and three-dimensional lung images acquired with ventilation-gated, radial k-space sampling showed complete ventilation of both lungs. All images were of high quality, demonstrating that HP He-3 allows high-signal-intensity MR imaging in living systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.