Summary
The organic matter (OM) of soils with andic properties has long been considered highly stable because of the presence of Al–humus complexes and sorption of organic ligands onto amorphous compounds. In this study, we characterized soils under different land use regimes located within an amphibolitic massif close to Santiago de Compostela (Spain), where soils with andic properties are present. Slash and burn agriculture was a common practice in the area until the second half of the 20th century. Thereafter, modern agriculture was progressively introduced into the area (AGR soils), and the rest of the land was either reforested or abandoned (FOR soils). We found that the mean organic C content of AGR soils (48.7 g kg−1) was ∼ 50% that of FOR soils (94.2 g kg−1). Mean soil pH was significantly greater (P < 0.05) in the AGR than in the FOR soils (4.95 compared with 4.63), which is attributed to liming and Ca‐phosphate fertilization of the former. Mean concentrations of the Al forms studied (extractable with CuCl2, sodium pyrophosphate, ammonium oxalate, or NaOH) were significantly smaller (P < 0.01) in AGR (1.4, 4.9, 9.3, 11.0 g kg−1, respectively) than in FOR soils (3.9, 10.2, 16.5, 17.9 g kg−1, respectively). The results show the vulnerability of the OM and Al–humus complexes in these soils to modern agricultural practices, which has led to the attenuation – and in some cases even the disappearance – of andic soil properties in a relatively short time (< 30 years) following changes in land use/management. We propose the inclusion of the formative element ‘andic’ in the criteria for the definition of Umbrisol subunits; this would avoid the abrupt discontinuity observed in the current World Reference Base classification.
We first present detailed measurements of the rounding behavior around the superconducting transition temperature, T c , of the in-plane electrical conductivity, magnetoconductivity and magnetization, including the low and moderate magnetic field regimes, in a high-quality single crystal and a thin film of the prototypical optimally-doped YBa 2 Cu 3 O 7-δ (OPT Y-123), in which the inhomogeneity effects are minimized. Then, we present a comparison of these experimental data with the phenomenological Ginzburg-Landau (GL) approach that takes into account the unavoidable contribution of the fluctuating pairs, the only theoretical scenario that at present allows analysis of these roundings at the quantitative level. These analyses demonstrate that the measured rounding effects around T c may be explained quantitatively and consistently in terms of the GL scenario, even up to the rounding onset temperatures if the quantum localization, associated with the shrinkage of the superconducting wave function, is taken into account. The implications of our results on the pseudogap physics of optimally-doped cuprates are also discussed.
The objective of this study was to determine to what extent the attenuation or loss of andic soil properties caused by land use change -from forest (FOR, average C content 118.2 AE 23.7 g kg À1 ) to agricultural land (AGR, average C content 55.7 AE 16.7 g kg À1 ) use -is reflected in soil organic matter (SOM) at the molecular level. For this, NaOH-extractable SOM of A horizons from 17 soils developed on amphibolitic parent material in NW Spain was studied by pyrolysis gas chromatography spectrometry (Py-GC/MS). We also included two buried andic A horizons (PAL, 2200 cal yr BP in age) on the same parent material, as a reference for the molecular composition of SOM from soils without recent litter additions. Organic matter of PAL soils had a composition largely different from that of superficial soils (FOR and AGR), with an important relative contribution of microbial polysaccharides and Ncompounds, and an absence of compounds that characterize fresh plant litter (e.g. lignins). In the superficial soils, the relative contribution of lignin-derived compounds was greater in AGR than in FOR soils. Differences were also observed in the relative contribution of aliphatic compounds, FOR soils being enriched in this type of components compared with AGR soils. The results indicated that land use change from FOR to AGR, which was accompanied by a decrease in total SOM, resulted in an enrichment in primary SOM. The smaller relative abundance of primary SOM derivatives in andic FOR soils indicates that these compounds were quickly degraded in Andisols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.