The aim of this work was to better understand the performance of binary blends of biodegradable aliphatic polyesters to overcome some limitations of the pure polymers (e.g., brittleness, low stiffness, and low toughness). Binary blends of poly(e-caprolactone) (PCL) and poly(lactic acid) (PLA) were prepared by melt blending (in a twin-screw extruder) followed by injection molding. The compositions ranged from pure biodegradable polymers to 25 wt % increments. Morphological characterization was performed with scanning electron microscopy and differential scanning calorimetry. The initial modulus, stress and strain at yield, strain at break, and impact toughness of the biodegradable polymer blends were investigated. The properties were described by models assuming different interfacial behaviors (e.g., good adhesion and no adhesion between the dissimilar materials).The results indicated that PCL behaved as a polymeric plasticizer to PLA and improved the flexibility and ductility of the blends, giving the blends higher impact toughness. The strain at break was effectively improved by the addition of PCL to PLA, and this was followed by a decrease in the stress at break. The two biodegradable polymers were proved to be immiscible but nevertheless showed some degree of adhesion between the two phases. This was also quantified by the mechanical property prediction models, which, in conjunction with material property characterization, allowed unambiguous detection of the interfacial behavior of the polymer blends.
Summary: The cold crystallization process of initially amorphous poly(L‐lactic acid), PLLA, with two different molecular weights, during a heating at 2 °C/min, was investigated by DSC and time‐resolved simultaneous SAXS and WAXS, using synchrotron radiation. Equatorial scans of the isotropic 2D‐SAXS patterns showed that the average Bragg long period (LB) of PLLA samples was approximately constant with the development of cold crystallization up to a temperature that corresponded to a melt/re‐crystallization process that took place before the nominal melting peak seen by DSC. LB values were found to be higher for the high molecular weight material. This was in accordance with the higher melting temperature observed in the high molecular weight PLLA that implied the existence of thicker lamellae. WAXS results showed that the molecular weight did not apparently affect the crystal form and the final degree of crystallinity of PLLA. The Avrami parameters from WAXS and DSC were consistent, showing that the non‐isothermal cold crystallization of the two PLLA samples corresponded mainly to a three‐dimensional growth, although an imperfect crystallization process was involved at early times. The crystallization rate of PLLA, observed both by WAXS and DSC, decreased with increasing molecular weight.SAXS profiles of PLLA2 as a function of temperature. The inset shows the 2D‐SAXS pattern obtained at 180 °C.magnified imageSAXS profiles of PLLA2 as a function of temperature. The inset shows the 2D‐SAXS pattern obtained at 180 °C.
Printing technologies have been demonstrated to be highly efficient and compatible with polymeric materials (both inks and substrates) enabling a new generation of flexible electronics applications. Conductive flexible polymers are a new class of materials that are prepared for a wide range of applications, such as photovoltaic solar cells, transistors molecular devices, and sensors and actuators. There are many possible printing techniques. This chapter provides an opportunity to review the most common printing techniques used at the industrial level, the most commonly used substrates and electronic materials, giving an overall vision for a better understanding and evaluation of their different features. Several technological solutions (contact/noncontact) and its critical challenges are also presented. Inkjet Printing Technology (IPT) has been receiving a great attention and therefore higher focus is given to this technology. An overview of IPT is presented to evidence its importance and potential as a key-technology on the research field for printed electronics development, as well as on large scale industrial manufacturing. A background and a review on prior work are presented along with used materials, developed applications and potential of IPT technology. The main features of the different printing technologies, advantages and main challenges are also compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.