E. coli threonyl-tRNA synthetase (ThrRS) is a class II enzyme that represses the translation of its own mRNA. We report the crystal structure at 2.9 A resolution of the complex between tRNA(Thr) and ThrRS, whose structural features reveal novel strategies for providing specificity in tRNA selection. These include an amino-terminal domain containing a novel protein fold that makes minor groove contacts with the tRNA acceptor stem. The enzyme induces a large deformation of the anticodon loop, resulting in an interaction between two adjacent anticodon bases, which accounts for their prominent role in tRNA identity and translational regulation. A zinc ion found in the active site is implicated in amino acid recognition/discrimination.
A significant effort has teen made in order to improve the continuum model used for calculation of the solvation thermodynamic quantities of a molecule embedded in a cavity formed by the intersecting van der Waals spheres of the solute in a polarizable medium. These improvements principally concern the thermodynamic quantities associated with the electrostatic part of the solvation energy. A simple method is proposed for the calculation of the fictive charge density representing the reaction potential. The calculated values obtained agree quite well with those calculated within more sophisticated methods. The improvements also principally concern the representation of solvation sites. The method is applied to the calculation of the vaporization thermodynamic quantities of nonassociated liquids, and the results obtained are discussed in relation with experimental data.
cClostridium difficile is an emergent human pathogen and the most common cause of nosocomial diarrhea. Our recent data strongly suggest the importance of RNA-based mechanisms for the control of gene expression in C. difficile. In an effort to understand the function of the RNA chaperone protein Hfq, we constructed and characterized an Hfq-depleted strain in C. difficile. Hfq depletion led to a growth defect, morphological changes, an increased sensitivity to stresses, and a better ability to sporulate and to form biofilms. The transcriptome analysis revealed pleiotropic effects of Hfq depletion on gene expression in C. difficile, including genes encoding proteins involved in sporulation, stress response, metabolic pathways, cell wall-associated proteins, transporters, and transcriptional regulators and genes of unknown function. Remarkably, a great number of genes of the regulon dependent on sporulation-specific sigma factor, SigK, were upregulated in the Hfq-depleted strain. The altered accumulation of several sRNAs and interaction of Hfq with selected sRNAs suggest potential involvement of Hfq in these regulatory RNA functions. Altogether, these results suggest the pleiotropic role of Hfq protein in C. difficile physiology, including processes important for the C. difficile infection cycle, and expand our knowledge of Hfq-dependent regulation in Gram-positive bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.