In this paper, we propose a procedure to reduce dimensionality of hyperspectral data while preserving relevant information for posterior crop cover classification. One of the main problems with hyperspectral image processing is the huge amount of data involved. In addition, pattern recognition methods are sensitive to problems associated to high dimensionality feature spaces (referred to as Hughes phenomenon or curse of dimensionality). We propose a dimensionality reduction strategy that eliminates redundant information by means of local correlation criterion between contiguous spectral bands; and a subsequent selection of the most discriminative features based on a Sequential Float Feature Selection algorithm. This method is tested with a crop cover recognition application of six hyperspectral images from the same area acquired with the 128-bands HyMap spectrometer during the DAISEX99 campaign. In the experiments, we analyze the dependence on the dimension and employed metrics. The results obtained using Gaussian Maximum Likelihood improve the classification accuracy and confirm the validity of the proposed approach. Finally, we analyze the selected bands of the input space in order to gain knowledge on the problem and to give a physical interpretation of the results.
Chlorophyll fluorescence (ChF) emission is a direct indicator of the photosynthetic activity of vegetation, which is a key parameter of the carbon cycle. This paper analyses chlorophyll fluorescence evolution at leaf level during a complete diurnal cycle in simulated and natural conditions, for two species under different stress conditions. Absolute spectral radiance of the ChF emission is obtained allowing a quantitative derivation of the fluorescence yield of the ChF, which correlates well with established fluorescence instruments. The studied cases show that the ChF emission is mainly driven by the photosynthetic active radiation during the whole cycle, but the fluorescence yield is severely reduced during the central hours of the day when the plant is under stress due to light and heat. Results show that the Fraunhofer Line Discriminator method is an accurate way of retrieving quantitative values of ChF from remote sensing sensors at 760 nm and suggest that the mid-morning period is the best time of the day to maximize signal levels while identifying vegetation stress state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.