Background: Deep brain stimulation (DBS) is used to modulate the activity of dysfunctional brain circuits. The safety and efficacy of DBS in dementia is unknown.Objective: To assess DBS of memory circuits as a treatment for patients with mild Alzheimer’s disease (AD).Methods: We evaluated active “on” versus sham “off” bilateral DBS directed at the fornix-a major fiber bundle in the brain’s memory circuit-in a randomized, double-blind trial (ClinicalTrials.gov NCT01608061) in 42 patients with mild AD. We measured cognitive function and cerebral glucose metabolism up to 12 months post-implantation.Results: Surgery and electrical stimulation were safe and well tolerated. There were no significant differences in the primary cognitive outcomes (ADAS-Cog 13, CDR-SB) in the “on” versus “off” stimulation group at 12 months for the whole cohort. Patients receiving stimulation showed increased metabolism at 6 months but this was not significant at 12 months. On post-hoc analysis, there was a significant interaction between age and treatment outcome: in contrast to patients <65 years old (n = 12) whose results trended toward being worse with DBS ON versus OFF, in patients≥65 (n = 30) DBS-f ON treatment was associated with a trend toward both benefit on clinical outcomes and a greater increase in cerebral glucose metabolism.Conclusion: DBS for AD was safe and associated with increased cerebral glucose metabolism. There were no differences in cognitive outcomes for participants as a whole, but participants aged≥65 years may have derived benefit while there was possible worsening in patients below age 65 years with stimulation.
Human lesion and functional imaging data suggest a central role for the amygdala in the processing of negative stimuli. To determine whether the amygdala's role in affective processing extends beyond negative stimuli, subjects viewed pictures that varied in emotional content (positive vs negative valence) and arousal level (high vs low) while undergoing functional magnetic resonance imaging. Amygdala activation, relative to a low arousal and neutral valence picture baseline, was significantly increased for both positively and negatively valenced stimuli and did not differ for the two valences. There were no laterality effects. Whereas arousal level appeared to modulate the amygdala response for negative stimuli, all positively valenced pictures (both high and low in arousal) produced significant amygdala responses. These results clearly demonstrate a role for the amygdala in processing emotional stimuli that extends beyond negative and fearful stimuli.
DBS-f was safe. Additional study of mechanisms of action and methods for titrating stimulation parameters will be needed to determine if DBS has potential as an AD treatment. Future efficacy studies should focus on patients over age 65.
Apathy is prevalent in schizophrenia, but its etiology has received little investigation. The ventral striatum (VS), a key brain region involved in motivated behavior, has been implicated in studies of apathy. We therefore evaluated whether apathy is associated with volume of the VS on MRI in 23 patients with schizophrenia using voxel-based morphometry. Results indicated that greater self-reported apathy severity was associated with smaller volume of the right VS even when controlling for age, gender, depression, and total gray matter volume. The finding suggests that apathy is related to abnormality of brain circuitry subserving motivated behavior in patients with schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.