The previous presearch data conditioning algorithm, PDC-MAP, for the Kepler data processing pipeline performs very well for the majority of targets in the Kepler field of view. However, for an appreciable minority, PDC-MAP has its limitations. To further minimize the number of targets for which PDC-MAP fails to perform admirably, we have developed a new method, called multiscale MAP, or msMAP. Utilizing an overcomplete discrete wavelet transform, the new method divides each light curve into multiple channels, or bands. The light curves in each band are then corrected separately, thereby allowing for a better separation of characteristic signals and improved removal of the systematics.
We present the Kepler Object of Interest (KOI) catalog of transiting exoplanets based on searching 4 yr of Kepler time series photometry (Data Release 25, Q1-Q17). The catalog contains 8054 KOIs, of which 4034 are planet candidates with periods between 0.25and 632days. Of these candidates, 219 are new, including two in multiplanet systems (KOI-82.06 and KOI-2926.05) and 10 high-reliability, terrestrial-size, habitable zone candidates. This catalog was created using a tool called the Robovetter, which automatically vets the DR25 threshold crossing events (TCEs). The Robovetter also vetted simulated data sets and measured how well it was able to separate TCEs caused by noise from those caused by low signal-to-noise transits. We discuss the Robovetter and the metrics it uses to sort TCEs. For orbital periods less than 100 days the Robovetter completeness (the fraction of simulated transits that are determined to be planet candidates) across all observed stars is greater 1 than 85%. For the same period range, the catalog reliability (the fraction of candidates that are not due to instrumental or stellar noise) is greater than 98%. However, for low signal-to-noise candidates between 200 and 500 days around FGK-dwarf stars, the Robovetter is 76.7% complete and the catalog is 50.5% reliable. The KOI catalog, the transit fits, and all of the simulated data used to characterize this catalog are available at the NASA Exoplanet Archive.
We measure planet occurrence rates using the planet candidates discovered by the Q1-Q16 Kepler pipeline search. This study examines planet occurrence rates for the Kepler GK dwarf target sample for planet radii, 0.75≤R p ≤2.5 R ⊕ , and orbital periods, 50≤P orb ≤300 days, with an emphasis on a thorough exploration and identification of the most important sources of systematic uncertainties. Integrating over this parameter space, we measure an occurrence rate of F 0 =0.77 planets per star, with an allowed range of 0.3≤ F 0 ≤1.9. The allowed range takes into account both statistical and systematic uncertainties, and values of F 0 beyond the allowed range are significantly in disagreement with our analysis. We generally find higher planet occurrence rates and a steeper increase in planet occurrence rates towards small planets than previous studies of the Kepler GK dwarf sample. Through extrapolation, we find that the one year orbital period terrestrial planet occurrence rate, ζ 1.0 =0.1, with an allowed range of 0.01≤ ζ 1.0 ≤2, where ζ 1.0 is defined as the number of planets per star within 20% of the R p and P orb of Earth. For G dwarf hosts, the ζ 1.0 parameter space is a subset of the larger η ⊕ parameter space, thus ζ 1.0 places a lower limit on η ⊕ for G dwarf hosts. From our analysis, we identify the leading sources of systematics impacting Kepler occurrence rate determinations as: reliability of the planet candidate sample, planet radii, pipeline completeness, and stellar parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.