The effect of linseed oil (LSO) supplementation on total-tract and ruminal nutrient digestibility, N metabolism, and ruminal fluid characteristics was investigated in dairy cows fed diets containing different forage to concentrate ratios (F:C). The experimental design was a 4 x 4 Latin square with 2 x 2 factorial arrangement of treatments. Four lactating Holstein cows were fed a forage-rich diet without LSO (F; F:C = 65:35, dry matter basis), a forage-rich diet with LSO (FO; F:C = 65:32, 3% LSO), a concentrate-rich diet without LSO (C; F:C = 35:65), or a concentrate-rich diet with LSO (CO; F:C = 35:62, 3% LSO). Total-tract digestibility of DM and OM was greater with supplemental LSO. A tendency for greater total-tract digestibility of NDF and ADF also was observed in cows fed LSO. Ruminal digestibility of NDF or ADF decreased when CO was fed compared with C. In contrast, feeding FO increased NDF or ADF digestibility compared with F. Although ruminal starch digestion was nearly complete with all diets, digestibility was greater when cows were fed C or CO compared with F or FO. Bacterial N flow to the duodenum decreased when FO was fed compared with F. In contrast, feeding CO increased bacterial-N flow compared with C. Neither F:C nor LSO supplementation affected ruminal pH or total VFA concentration in ruminal fluid. However, molar proportion of propionate was greater with C or CO compared with F or FO and increased with LSO supplementation regardless of F:C. Molar proportion of n-butyrate decreased with LSO supplementation. Total protozoal numbers in ruminal fluid decreased markedly only when CO was fed. Overall, data show that feeding LSO had no negative effects on total-tract digestion in dairy cows but may decrease ruminal fiber digestibility when fed with high-concentrate diets. The widely spread idea that LSO decreases digestibility, arising from studies with sheep, did not seem to apply to lactating cows fed 3% LSO.
The effects of supplemental calcium salts of rapeseed oil fatty acids (FA) and rapeseed oil on ruminal metabolism and apparent digestibility of lipids in the small intestine were studied using three multiparous Holstein x Friesian cows in a 3 x 3 Latin square design. Cows fitted with ruminal, duodenal, and ileal cannulas were fed restricted amounts of a control diet (C) containing 65% corn silage and 35% concentrate mix or diet C with supplemental calcium salts of rapeseed oil FA (S) or diet C supplemented with rapeseed oil (O). Fatty acid contents were 1.9, 8.4, and 7.6% for diets C, S, and O, respectively. The average flow of total FA to the duodenum was lower than the intake for supplemented treatments, suggesting catabolism of FA by ruminal microbes. Fatty acid flows at the duodenum were higher (P < .10) for diets supplemented with fat than for diet C, except for C18: 3(n-3) and straight-chain and branched-chain C15 and C17. Fat treatment affected total and individual FA flow to the ileum, except C14:0 and C18:2(n-6) and excreted amount of individual FA, except C14:0, C16:0, and total C18:1. In our trial, the addition of fat, regardless of origin, affected small intestinal digestibilities of C14:0 and C18:2(n-6) and did not affect changes in the amount of FA in the hindgut.
We assessed the effects of nutrient supply and dietary bulk, both increasing with hay intake, on O2 uptake and nutrient net fluxes across the portal-(PDV) and mesenteric- (MDV) drained viscera, and the rumen in adult ewes. Four ewes, fitted with a ruminal cannula, with catheters in the mesenteric artery, the portal, mesenteric and right ruminal veins, and with a blood flow probe around the right ruminal artery, were used in a 4 x 4 Latin square design. Treatments consisted of 500 g DM/d hay (LL, low bulk and low nutrient supply), 500 g DM/d hay + infused nutrients (LH, low bulk and high nutrient supply), 750 g DM/d hay + infused nutrients (MH, medium bulk and high nutrient supply), and 1,000 g DM/d hay (HH, high bulk and high nutrient supply). Infused nutrients consisted of volatile fatty acids (VFA) and casein dissolved in salts and infused continuously in the rumen to provide the same amount of metabolizable energy (7.6 MJ/d) and digestible protein (63 g/d) for LH, MH, and HH. Both increases in bulk and nutrient supply increased O2 uptake in the MDV and PDV. Dietary bulk stimulated mainly blood flow, whereas nutrient supply stimulated mainly O2 extraction rate. The O2 uptake by the rumen was not significantly affected by hay intake, although blood flow increased due to nutrient supply. Increase in hay intake had no effects on portal net release of lactate and net uptake of glucose but increased VFA, 3-D-hydroxybutyrate, ammonia, and amino acids (AA) net release and urea net uptake across PDV. The increase in portal nutrient net fluxes with hay intake was entirely related to the increase of nutrient supply for VFA, 3-D-hydroxybutyrate, ammonia, and urea, irrespective of the amount of casein infused for AA. Dietary bulk had no effect on total energy net release in the portal vein. We conclude that despite the increase in portal O2 uptake, increasing dietary bulk had no significant impact on portal recovery of energy. In ruminal tissues, which were the main site of energy absorption, O2 uptake appeared low and was not sensitive to dietary manipulation. In contrast, in mesenteric tissues, which contribute poorly to energy absorption with forage diets, O2 uptake appeared high and very sensitive to dietary manipulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.