T-cell priming is strongly affected by the longevity of antigenbearing dendritic cells (DCs), which are typically short-lived in lymphoid tissues. 'Survival gene' Bcl-xl is critical for the lifespan of DCs in vivo. Here, we showed that in vivo coadministration of Bcl-xl under control of the DC-specific promoter (CD11c-Bcl-xl) and TRP2hsp70 DNA prolonged T-cell stimulation by DCs and augmented TRP2-specific-IFNg-producing CD8+ T-cell responses. Consistent with these findings, enhanced protection and significant therapeutic immunity to B16 melanoma was generated by this coimmunization strategy, which also augmented therapeutic immunity to GL-26 tumor. In this B16 melanoma model, results from animal experiments with depletion of immune cells indicate that CD8+ T cells and NK cells are important in the antitumor immunity induced by this coimmunization strategy. These observations suggest that 'survival gene' Bcl-xl potentiates the magnitude of antigen-specific-CD8+ T-cell responses and the efficacy of antitumor immunity induced by DNA vaccine, and is relevant for the design of in vivo targeted DC-based vaccine strategies to improve immunity against cancer. Gene Therapy (2005) 12, 1517-1525.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.