Identity of quantitative trait loci (QTL) governing resistance to fusarium head blight (FHB) initial infection (type I), spread (type II), kernel infection, and deoxynivalenol (DON) accumulation was characterized in Chinese wheat line W14. Ninety-six double-haploid lines derived from a cross of W14 · ÕPion2684Õ were evaluated for FHB resistance in two greenhouse and one field experiment. Two known major QTL were validated on chromosomes 3BS and 5AS in W14 using the composite interval mapping method. The 3BS QTL had a larger effect on resistance than the 5AS QTL in the greenhouse experiments, whereas, the 5AS QTL had a larger effect in the field experiment. These two QTL together explained 33%, 35%, and 31% of the total phenotypic variation for disease spread, kernel infection, and DON concentration in the greenhouse experiments, respectively. In the field experiment, the two QTL explained 34% and 26% of the total phenotypic variation for FHB incidence and severity, respectively. W14 has both QTL, which confer reduced initial infection, disease spread, kernel infection, and DON accumulation. Therefore, marker-assisted selection (MAS) for both QTL should be implemented in incorporating W14 resistance into adapted backgrounds. Flanking markers Xbarc133 and Xgwm493 on 3BS and Xbarc117 and Xbarc56 on 5AS are suggested for MAS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.