Twenty cases of patients with relapsed acute promyelocytic leukemia (APL) were entered into this study for evaluating the clinical efficacy and pharmacokinetics of low-dose arsenic trioxide (As 2 O 3 ). As 2 O 3 was given at a daily dose of 0.08 mg/kg intravenously for 28 days. Pharmacokinetic study was carried out in eight patients. 16/20 (80%) patients achieved CR. The occurrence of some toxic events including gastrointestinal disturbance, facial edema and cardiac toxicity seemed reduced in the low-dose group than those in the standard-dose group. Differentiation changes were observed in peripheral blood, as well as in bone marrow (BM). Pharmacokinetic study showed that the plasma concentration increased soon after administration of As 2 O 3 with the peak values of 1.535-3.424 mol/l. After infusion, the plasma concentration was around 0.1-0.5 mol/l. The arsenic concentration of the plasma of BM aspirates 24 h after administration in five patients was close to the level needed for differentiation-inducing effect. The estimated 2-year OS and RFS were 61.55 ± 15.79% and 49.11 ± 15.09% respectively, with no difference as compared with those in patients treated with conventional dose (P = 0.2865 and 0.7146, respectively). In conclusion, we demonstrated that low-dose As 2 O 3 had the same effect as the conventional dosage and the mechanism of low-dose arsenic seemed to primarily induce differentiation of APL cells. Leukemia (2001) 15, 735-741.
Gankyrin is a regulatory subunit of the 26kD proteasome complex. As a novel oncoprotein, gankyrin is expressed aberrantly in cancers from several different sites and has been shown to contribute to oncogenesis in endometrial and cervical carcinomas. Neither gankyrin's contribution to the development of epithelial ovarian cancer nor its interaction with follicle-stimulating hormone (FSH)-driven proliferation in ovarian cancer has been studied. Here we have found that gankyrin is overexpressed in ovarian cancers compared with benign ovarian cystadenomas and that gankyrin regulates FSH upregulation of cyclin D1. Importantly, gankyrin regulates PI3K/AKT signaling by downregulating PTEN. Prolonged AKT activation by FSH stimulation of the FSH receptor (FSHR) promotes gankyrin expression, which, in turn, enhances AKT activation by inhibiting PTEN. Overexpression of gankyrin decreases hypoxia inducible factor-1α (HIF-1α) protein levels, but has little effect on HIF-1α mRNA levels, which could be attributed to gankyrin mediating HIF-1α protein stability via the ubiquitin-proteasome pathway. Reduction in HIF-1α protein stability led to attenuation of the binding with cyclin D1 promoter, resulted in abolishment of the negative regulation of cyclin D1 by HIF-1α, which promotes proliferation of ovarian cancer cells. Our results document that gankyrin regulates HIF-1α protein stability and cyclin D1 expression, ultimately mediating FSH-driven ovarian cancer cell proliferation.
Histone deacetylases (HDACs) are major epigenetic modulators involved in a broad spectrum of human diseases including cancers. As HDACs are promising targets of cancer therapy, it is important to understand the mechanisms of HDAC regulation. In this study, we show that ubiquitin-specific peptidase 4 (USP4) interacts directly with and deubiquitinates HDAC2, leading to the stabilization of HDAC2. Accumulation of HDAC2 in USP4-overexpression cells leads to compromised p53 acetylation as well as crippled p53 transcriptional activation, accumulation and apoptotic response upon DNA damage. Moreover, USP4 targets HDAC2 to downregulate tumor necrosis factor TNFα-induced nuclear factor (NF)-κB activation. Taken together, our study provides a novel insight into the ubiquitination and stability of HDAC2 and uncovers a previously unknown function of USP4 in cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.