The paper presents the results of investigations into the possibility of using ahigh-pressure water-ice jet as a new method for removing a worn-out paint coating from the surface of metal parts (including those found in means of transportation) and for preparing the base surface for the application of renovation paint coating. Experimental investigations were carried out in four stages, on flat specimens, sized S × H = 75 × 115 mm, cut from sheet metal made of various materials such as steel X5CrNi18-10, PA2 aluminium alloy and PMMA polymethyl methacrylate (plastic). In the first stage, the surfaces of the samples were subjected to observation of surface morphology under a scanning electron microscope, and surface topography (ST) measurements were made on a profilographometer. Two ST parameters were analysed in detail: the maximum height of surface roughness Sz and the arithmetic mean surface roughness Sa. Next, paint coatings were applied to the specimens as a base. In the third stage, the paint coating applied was removed by means of a high-pressure water-ice jet (HPWIJ) by changing the values of the technological parameters, i.e., water jet pressure pw, dry ice mass flow rate m˙L, distance between the sprinkler head outlet and the surface being treated (the so-called working jet length) l2 and spray angle κ for the following constants: the number of TS = 4 holes, water hole diameter φ = 1.2 mm and sprinkler head length Lk = 200 mm. Afterwards, the surface morphology was observed again and the surface topography of the specimen was investigated by measuring selected 3D parameters of the ST structure, Sz and Sa. The results of investigations into the influence of selected HPWIJ treatment parameters on the surface QF removal efficiency obtained are also presented. Univariate regression functions were developed for the mean stripping efficiency based on the following: dry ice mass flow rate m˙L, working jet length l2 and spray angle κ. Based on these functions, the values of optimal parameters were determined that allow the maximum efficiency of the process to be obtained. A 95% confidence region for the regression function was also developed. The results demonstrated that HPWIJ treatment does not interfere with the geometric structure of the base material, and they confirmed the possibility of using this treatment as an efficient method of removing a worn paint layer from bases made of various metal and plastic materials, and preparing it for applying a new layer during renovation.
Properties of the surface layer after cutting or sliding burnishing depend mainly on type of process and its performance conditions. For its comprehensive analysis is necessary to develop an adequate mathematical model and numerical methods of solving it. A common feature of both processes is moving the tool edge on elastic/visco-plastic workpiece. However, these processes are different i.e. the chip formation or chipless forming, therefore, different properties of surface layer depend mainly on: the geometry of the tool edge and its workpiece relative and depth of process. Therefore, this article is about the application of an incremental modelling and numerical solution of the contact problem between movable rigid and elastic/visco-plastic bodies developed in [ to the numerical simulation of physical process of moving a rigid tool on the workpiece.
This article concerns the application of the FEM method for the prediction of stress and deformation states in the workpiece during diamond sliding burnishing (DSB). An updated Lagrange (UL) description was used to describe the phenomena at a typical incremental step. The states of strain and strain rate are described by non-linear relationships without linearization. The material parameters were estimated during tensile tests to determine the characteristics of the 41Cr4 steel. Its hardness was also tested. Its aim was to prepare a table with the material properties of the above-mentioned steel and its implementation for numerical analyses. A Cowper–Symonds material model was used to model the displacement process of the wedge on an elastic/visco-plastic body reflecting the DSB process. The computer model was validated, and a good convergence of the results was obtained. Applications in the ANSYS/LS-Dyna program were developed to simulate the process of DSB. The results of numerical analyses were presented, among others, to explain the influence of the rake angle on the condition of the surface after machining, as well as the phenomenon of chip formation. The results of numerical simulations were verified experimentally on a test stand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.