We propose a new objective for network research: to build a fundamentally different sort of network that can assemble itself given high level instructions, reassemble itself as requirements change, automatically discover when something goes wrong, and automatically fix a detected problem or explain why it cannot do so.We further argue that to achieve this goal, it is not sufficient to improve incrementally on the techniques and algorithms we know today. Instead, we propose a new construct, the Knowledge Plane, a pervasive system within the network that builds and maintains highlevel models of what the network is supposed to do, in order to provide services and advice to other elements of the network. The knowledge plane is novel in its reliance on the tools of AI and cognitive systems. We argue that cognitive techniques, rather than traditional algorithmic approaches, are best suited to meeting the uncertainties and complexity of our objective.
We propose a new objective for network research: to build a fundamentally different sort of network that can assemble itself given high level instructions, reassemble itself as requirements change, automatically discover when something goes wrong, and automatically fix a detected problem or explain why it cannot do so.We further argue that to achieve this goal, it is not sufficient to improve incrementally on the techniques and algorithms we know today. Instead, we propose a new construct, the Knowledge Plane, a pervasive system within the network that builds and maintains highlevel models of what the network is supposed to do, in order to provide services and advice to other elements of the network. The knowledge plane is novel in its reliance on the tools of AI and cognitive systems. We argue that cognitive techniques, rather than traditional algorithmic approaches, are best suited to meeting the uncertainties and complexity of our objective.
An open (in the sense of extensible and programmable) architecture for IP telecommunications must be based on a comprehensive strategy for managing feature interaction. We describe our experience with BoxOS, an IP telecommunication platform that implements the DFC technology for feature composition. We present solutions to problems, common to all efforts in IP telecommunications, of feature distribution, interoperability, and media management. We also explain how BoxOS addresses many deficiencies in SIP, including how BoxOS can be used as a SIP application server.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.