Random Decentering Algorithm (RDA) on a undirected unweighted graph is defined and tested over several concrete scale-free networks. RDA introduces ancillary nodes to the given network following basic principles of minimal cost, density preservation, centrality reduction and randomness. First simulations over scale-free networks show that RDA gives a significant decreasing of both betweenness centrality and closeness centrality and hence topological protection of network is improved. On the other hand, the procedure is performed without significant change of the density of connections of the given network. Thus ancillae are not distinguible from real nodes (in a straightforward way) and hence network is obfuscated to potential adversaries by our manipulation.
This paper presents a simulation based on the boundary element method for the optimization of the thermomechanical behavior of three-dimensional microchip-dissipator packaging when the heat generation produced is medium-low. Starting from a basic architecture studied in the literature, different modifications affecting both elastic boundary conditions and the contact interface between the microprocessor and the heatsink are included and studied in order to improve heat dissipation. A nonlinear interface material is included at the interface of both solids. Thus, a thermal contact conductance as a function of the normal contact traction is simulated. Finally, all these improvements in both contact interface and boundary conditions are applied to study the maximum heat generation that this kind of architecture can efficiently dissipate, so that the microchip will not be damaged due to thermal deformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.