In this paper we study compression techniques for electroencephalograph (EEG) signals. A variety of lossless compression techniques, including compress, gzip, bzip, shorten, and several predictive coding methods, are investigated and compared. The methods range from simple dictionary based approaches to more sophisticated context modeling techniques. It is seen that compression ratios obtained by lossless compression are limited even with sophisticated context-based bias cancellation and activity-based conditional coding. Though lossy compression can yield significantly higher compression ratios while potentially preserving diagnostic accuracy, it is not usually employed due to legal concerns. Hence, we investigate a near-lossless compression technique that gives quantitative bounds on the errors introduced during compression. It is observed that such a technique gives significantly higher compression ratios (up to 3-bit per sample saving with less than 1% error). Compression results are reported for EEGs recorded under various clinical conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.