Improvement (up to a factor of approximately 4) of the electron-cyclotron (EC) current drive efficiency in plasmas sustained by lower-hybrid (LH) current drive has been demonstrated in stationary conditions on the Tore Supra tokamak. This was made possible by feedback controlled discharges at zero loop voltage, constant plasma current, and constant density. This effect, predicted by kinetic theory, results from a favorable interplay of the velocity space diffusions induced by the two waves: the EC wave pulling low-energy electrons out of the Maxwellian bulk, and the LH wave driving them to high parallel velocities.
The 118 GHz electron cyclotron heating and current drive (ECRH/ECCD) system under development in Cadarache, France, for use on the Tore Supra tokamak (Pain M. et al 1994 Proc. 18th SOFT (Karlsruhe) pp 481-4: Darbos C. et al 2000 Proc. 21st SOFT (Madrid) pp 605-9), is designed to launch 2.4 MW of power for up to 10 min into the plasma. At present two out of six gyrotrons are installed and available for injection of up to 800 kW. This paper concentrates on the generation and transmission of the ECRH/ECCD power for very long pulse operation. The power is injected into the plasma as Gaussian beams by an antenna which, using actively cooled mirrors inside the Tore Supra vacuum vessel, allows extensive control of both the poloidal and toroidal injection angles. The toroidal field on Tore Supra is normally in the range of 3.8-4 T, which for 118 GHz gives almost central deposition at the fundamental electron cyclotron resonance. A pair of actively cooled corrugated mirrors is installed in each matching optics unit at the output of each gyrotron allowing complete control of the polarization of the wave transmitted to the antenna, with the result that pure O-mode-or pure X-mode-power injection can be achieved for all injection angles. In tokamak experiments, a world record energy of 17.8 MJ has been injected into the plasma. New upgraded gyrotrons specified to produce 400 kW for up to 10 min will be introduced over the next 3-4 years.
The main results of the Tore Supra experimental programme in the years 2007-2008 are reported. They document significant progress achieved in the domain of steady-state tokamak research, as well as in more general issues relevant for ITER and for fusion physics research. Three areas are covered: ITER relevant technology developments and tests in a real machine environment, tokamak operational issues for high power and long pulses, and fusion plasma physics. Results presented in this paper include: test and validation of a new, load-resilient concept of ICRH antenna and of an inspection robot operated under ultra-high vacuum and high temperature conditions; an extensive experimental campaign (5 h of plasma) aiming at deuterium inventory and carbon migration studies; real-time control of sawteeth by ECCD in the presence of fast ion tails; ECRHassisted plasma startup studies; dimensionless scalings of transport and turbulence; transport experiments using active pertubation methods; resistive and fast-particle driven MHD studies. The potential role of Tore Supra in the worldwide fusion programme before the start of ITER operation is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.