A 20 MW/5GHz Lower Hybrid Current Drive (LHCD) system was initially due to be commissioned and used for the second mission of ITER, i.e. the Q=5 steady state target. Though not part of currently planned procurement phase, it is now under consideration for an earlier delivery. In this paper, both physics and technology conceptual designs are reviewed.
The TORE SUPRA lower hybrid current drive experiments (8 MWi3.7 GHz) use large phased waveguide arrays, four rows of 32 active waveguides and two passive waveguides for each of the two grills, to couple the waves to the plasma. These launchers are based on the 'multijunction' principle which allows them to be quite compact and is therefore attractive for the design of efficient multi-megawatt antennas in NETIITER. Extensive coupling measurements have been performed in order to study the radiofrequency (RF) characteristics of the plasma loaded antennas. Measurements of the plasma scattering coefficients of the antennas show good agreement with those obtained from the linear coupling theory (SWAN code). Global reflection coefficients of a few per cent have been measured in a large range of edge plasma densities (0.3 X 10" m-3 I neg I 1.4 X 10l8 m-3) or antenna positions (0.02-0.05 m from the plasma edge) and up to a maximum injected RF power density of 45 MWlm'. When the plasma is pushed against the inner wall of the chamber, the reflection coefficient is found to remain low up to distances of the order of 0.10 m. The coupling measurements allow us to deduce the 'experimental' power spectra radiated by the antennas when all their modules are fed simultaneously with variable phases. Thus, the multijunction launcher is assessed as a viable antenna for high power transmission with good coupling characteristics and spectrum control.
n the framework of the ion cyclotron resonance frequency (ICRF) heating development at CEA Cadarache, a prototype antenna based on the load-resilient electrical layout foreseen for ITER has been built. This prototype was recently tested in Tore Supra. The ITER-like electrical scheme has been validated during fast perturbations at the edge plasma. Clear load resilience properties are reported. Main conclusions and consequences to be learned for the development of ITER antenna are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.