At present most horticultural products are classified and marketed according to quality standards, which provide a common language for growers, packers, buyers and consumers. The standardisation of both product and packaging enables greater speed and efficiency in management and marketing. Of all the vegetables grown in greenhouses, tomatoes are predominant in both surface area and tons produced. This paper will present the development and evaluation of a low investment classification system of tomatoes with these objectives: to put it at the service of producing farms and to classify for trading standards. An intelligent classifier of tomatoes has been developed by weight, diameter and colour. This system has optimised the necessary algorithms for data processing in the case of tomatoes, so that productivity is greatly increased, with the use of less expensive and lower performance electronics. The prototype is able to achieve very high speed classification, 12.5 ratings per second, using accessible and low cost commercial equipment for this. It decreases fourfold the manual sorting time and is not sen sitive to the variety of tomato classified. This system facilitates the processes of standardisation and quality control, increases the competitiveness of tomato farms and impacts positively on profitability. The automatic classification system described in this work represents a contribution from the economic point of view, as it is profitable for a farm in the short term (less than six months), while the existing systems, can only be used in large trading centers.Additional key words: artificial vision; low cost; Solanum lycopersicum; trading. Resumen Clasificadora inteligente de tomates de alta velocidad por color, tamaño y pesoEn la actualidad la mayoría de los productos hortofrutícolas son clasificados y comercializados según unos estándares de calidad, que proporcionan un lenguaje común para productores, empacadores, compradores y consumidores. De todas las hortalizas cultivadas en invernadero, el tomate es el que más presencia tiene en superficie y toneladas producidas. En este trabajo se desarrolla y evalúa un sistema de clasificación de tomates de bajo coste con dos objetivos: que sirva a los productores de tomate y que sea capaz de clasificar según los estándares establecidos. En este trabajo se desarrolla un clasificador inteligente de tomates según su peso, diámetro y color. Este sistema optimiza los algoritmos de análisis para el caso específico del tomate, con la ventaja del uso de electrónica de bajo coste. El prototipo es capaz de conseguir la clasificación a velocidad muy elevada, 12.5 clasificaciones por segundo, y utilizando para ello equipos comerciales accesibles y de bajo coste. Se consigue disminuir 4 veces el tiempo de la clasificación manual y no es sensible a la variedad de tomate clasificado. Este sistema facilita los procesos de estandarización y control de calidad, permitiendo aumentar la competitividad de las explotaciones agrícolas de tomate, repercutiendo positivamente en s...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.