The tectotectal commissural pathway is commonly regarded as responsible for the reciprocal inhibition that takes place between the two superior colliculi (SC). Although this hypothesis has received strong support from electrophysiological studies, more recent investigations have suggested that some collicular cells, e.g. fixation neurons, may establish excitatory connections with cells in the contralateral SC through the collicular commissure. The goal of the present study was to seek immunohistochemical evidence for glutamatergic tectotectal cells in the cat SC by using a double-labelling technique. Tectotectal cells were retrogradely labelled with wheat germ agglutinin (WGA) -horseradish peroxidase (HRP) coupled to colloidal gold injected in the contralateral SC, and neurons containing glutamate or gamma-aminobutyric acid (GABA) were then identified with immunohistochemical techniques. The present study provides evidence that, in the cat SC, equal numbers of tectotectal cells are immunopositive to glutamate and GABA, suggesting that the tectotectal pathway may consist of two distinct functional components. The finding that an equal number of tectotectal cells are GABAergic and glutamatergic is somewhat surprising as electrophysiological studies have invariantly indicated that the inhibitory component of the tectotectal projection predominates. Another striking feature of the GABAergic and glutamatergic tectotectal cell populations is their identical topographic distribution in the SC. These results suggest that not only cells in the rostral fixation zone establish excitatory connections with the contralateral SC. Tectotectal projections could be potentially important to shape the spatial pattern of saccade-related activity that may occur simultaneously in the two SC during vertical and oblique orienting movements.
Horseradish peroxidase has been injected in the masticatory and extraocular muscles in newborn and adult cats to identify the cells of origin for the muscle endings. Labeled motoneurons in the nuclei of the III, IV, V and VI nerves have been observed. They are the parent cells of the motor terminals taking up the enzyme in the muscle injected. Labeled ganglionic cells have been found scattered all along the ipsilateral mesencephalic nucleus of the V nerve after injection of both the jaw closing and the jaw opening muscles. Labeled cells have also been found in the ipsilateral caudal part of the same nucleus after injection of the extraocular muscles. These results are interpreted as due to enzyme uptake by the sensory endings of the muscle studied. Moreover cell bodies in the semilunar ganglion were found marked for both groups of muscles injected showing a second ganglionic representation for the sensory endings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.