Alterations in rumen epithelial structure and function during grain-induced subacute ruminal acidosis (SARA) are largely undescribed. In this study, four mature nonlactating dairy cattle were transitioned from a high-forage diet (HF; 0% grain) to a high-grain diet (HG; 65% grain). After feeding the HG diet for 3 wk, the cattle were transitioned back to the original HF diet, which was fed for an additional 3 wk. Continuous ruminal pH was measured on a weekly basis, and rumen papillae were biopsied during the baseline and at the first and final week of each diet. The mean, minimum, and maximum daily ruminal pH were depressed (P < 0.01) in the HG period compared with the HF period. During the HG period, SARA was diagnosed only during week 1, indicating ruminal adaptation to the HG diet. Microscopic examination of the papillae revealed a reduction (P < 0.01) in the stratum basale, spinosum, and granulosum layers, as well as total depth of the epithelium during the HG period. The highest (P < 0.05) papillae lesion scores were noted during week 1 when SARA occurred. Biopsied papillae exhibited a decline in cellular junctions, extensive sloughing of the stratum corneum, and the appearance of undifferentiated cells near the stratum corneum. Differential mRNA expression of candidate genes, including desmoglein 1 and IGF binding proteins 3, 5, and 6, was detected between diets using qRT-PCR. These results suggest that the structural integrity of the rumen epithelium is compromised during grain feeding and is associated with the differential expression of genes involved in epithelial growth and structure.
A mature dairy cow was transitioned from a high forage (100% forage) to a high-grain (79% grain) diet over seven days. Continuous ruminal pH recordings were utilized to diagnose the severity of ruminal acidosis. Additionally, blood and rumen papillae biopsies were collected to describe the structural and functional adaptations of the rumen epithelium. On the final day of the grain challenge, the daily mean ruminal pH was 5.41 ± 0.09 with a minimum of 4.89 and a maximum of 6.31. Ruminal pH was under 5.0 for 130 minutes (2.17 hours) which is characterized as the acute form of ruminal acidosis in cattle. The grain challenge increased blood beta-hydroxybutyrate by 1.8 times and rumen papillae mRNA expression of 3-hydroxy-3-methylglutaryl-coenzyme A synthase by 1.6 times. Ultrastructural and histological adaptations of the rumen epithelium were imaged by scanning electron and light microscopy. Rumen papillae from the high grain diet displayed extensive sloughing of the stratum corneum and compromised cell adhesion as large gaps were apparent between cells throughout the strata. This case report represents a rare documentation of how the rumen epithelium alters its function and structure during the initial stage of acute acidosis.
Two lines of turkey poults, one selected for rapid growth at 16 wk of age (F line) and the other a randombred control line (RBC2) were used to investigate the effect of selection for rapid growth on jejunal O2 consumption and glucose transport as well as whole-body O2 consumption. All trials used unsexed poults and were designed as a randomized complete block with day and line as independent variables. In Trial 1, 120 turkey poults, fed a standard starter ration (25.5% CP), were used to examine the effect of selection on feed intake, body weight gain, and efficiency from hatching (Day 0) to 13 d of age. At Day 14, 36 of 60 birds from each line were killed to measure intestinal length and weight and jejunal O2 consumption after 18 h of feed deprivation. Compared with the RBC2 line, the F line had relatively shorter but heavier small intestinal segments when adjusted by 18 h feed-deprived body weight (FBW; P < 0.001). The F line consumed more O2 over the entire jejunum adjusted to FBW than RBC2 line (43.8 vs 34.6 nmol O2/min.g FBW; P < 0.001). Jejunal ouabain- and cycloheximide-sensitive O2 consumption were greater (P < 0.05) in the F line. In Trial 2, 16 14-d-old poults from each line were used to measure in vitro jejunal glucose transport rate. There was no difference in glucose transport of the jejunum (nanomoles per minute per gram of FBW) between the lines. In Trial 3, 20 poults from each line were used to measure whole-body O2 consumption at 7 to 10 d of age. The F and RBC2 lines had similar whole-body O2 consumption rate per gram of FBW. These data suggest that selection of turkeys for rapid growth at 16 wk of age did not increase efficiency of jejunal glucose uptake in 14-d-old turkey poults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.