A 4.6 kb Staphylococcus aureus DNA fragment containing DNA gyrase-like genes (grlA and grlB) was cloned and sequenced. The proteins GrlA and GrlB exhibit more than 30% identity with E. coli DNA topoisomerase IV subunits and with the gyrase subunits from S. aureus and Escherichia coli. The combined E. coli cell extracts of GrlA and GrlB overproducing strains catalysed ATP-dependent relaxation and decatenation specific to DNA topoisomerase IV. The temperature-sensitive phenotype of Salmonella typhimurium parC and parE mutants was complemented by the S. aureus grlA and grlB genes, when the two genes were co-expressed. These results show that GrlA and GrlB are the subunits of S. aureus DNA topoisomerase IV. The GyrA subunit of DNA gyrase has been previously defined as a primary target of quinolones based on genetic and biochemical experiments essentially carried out in E. coli. Single-point mutations occurring in the 'quinolone resistance-determining region' (QRDR) of GyrA were found in bacteria exhibiting quinolone resistance, the most common mutation being a substitution of Ser-83 on the E. coli GyrA sequence. We analysed eight S. aureus fluoroquinolone-resistant clinical isolates and observed that mutations in the QRDR of GyrA are not present in the low-quinolone-resistant isolates. In contrast, Ser-80 of GrlA, which corresponds to Ser-83 of E. coli GyrA, is substituted to Phe or Tyr in both high- and low-quinolone-resistant isolates. We propose that DNA topoisomerase IV is a primary target of fluoroquinolones in S. aureus.
Fluoroquinolone-resistant mutants were obtained in vitro from Staphylococcus aureus RN4220 by stepwise selection on increasing concentrations of ciprofloxacin. Results from sequence analysis of the quinolone resistance-determining region of GyrA and of the corresponding region of GrlA, the DNA topoisomerase IV subunit, showed an alteration of Ser-80 to Tyr (corresponding to Ser-83 of Escherichia coli GyrA) or Glu-84 to Lys in GrlA of both low-and high-level quinolone-resistant mutants. Second-step mutants were found to have, in addition to a mutation in grlA, reduced accumulation of norfloxacin or an alteration in GyrA at Ser-84 to Leu or Glu-88 to Lys. Third-step mutants derived from second-step mutants with reduced accumulation were found to have a mutation in gyrA. The results from this study demonstrated that mutations in gyrA or mutations leading to reduced drug accumulation occur after alteration of GrlA, supporting the previous findings
We have designed and synthesized original cationic lipids for gene delivery. A synthetic method on solid support allowed easy access to unsymmetrically monofunctionalized polyamine building blocks of variable geometries. These polyamine building blocks were introduced into cationic lipids. To optimize the transfection efficiency in the novel series, we have carried out structure-activity relationship studies by introduction of variable-length lipids, of variable-length linkers between lipid and cationic moiety, and of substituted linkers. We introduce the concept of using the linkers within cationic lipids molecules as carriers of side groups harboring various functionalities (side chain entity), as assessed by the introduction of a library composed of cationic entities, additional lipid chains, targeting groups, and finally the molecular probes rhodamine and biotin for cellular traffic studies. The transfection activity of the products was assayed in vitro on Hela carcinoma, on NIH3T3, and on CV1 fibroblasts and in vivo on the Lewis Lung carcinoma model. Products from the series displayed high transfection activities. Results indicated that the introduction of a targeting side chain moiety into the cationic lipid is permitted. A primary physicochemical characterization of the DNA/lipid complexes was demonstrated with this leading compound. Selected products from the series are currently being developed for preclinical studies, and the labeled lipopolyamines can be used to study the intracellular traffic of DNA/cationic lipid complexes.
Plasmids currently used for nonviral gene transfer have the disadvantage of carrying a bacterial origin of replication and an antibiotic resistance gene. There is, therefore, a risk of uncontrolled dissemination of the therapeutic gene and the antibiotic resistance gene. Minicircles are new DNA delivery vehicles which do not have such elements and are consequently safer as they exhibit a high level of biological containment. They are obtained in E. coli by att site-specific recombination mediated by the phage lambda integrase. The desired eukaryotic expression cassette, bounded by the lambda attP and attB sites was cloned on a recombinant plasmid. The expression cassette was excised in vivo after thermoinduction of the integrase gene leading to the formation of two supercoiled molecules the minicircle and the starting plasmid lacking the expression cassette. In various cell lines, purified minicircles exhibited a two- to 10-fold higher luciferase reporter gene activity than the unrecombined plasmid. This could be due to either the removal of unnecessary plasmid sequences, which could affect gene expression or the smaller size of mini-circle which may confer better extracellular and intracellular bioavailability and result in improved gene delivery properties.
Gene therapy is based on the vectorization of genes to target cells and their subsequent expression. Cationic amphiphile-mediated delivery of plasmid DNA is the nonviral gene transfer method most often used. We examined the supramolecular structure of lipopolyamine͞plasmid DNA complexes under various condensing conditions. Plasmid DNA complexation with lipopolyamine micelles whose mean diameter was 5 nm revealed three domains, depending on the lipopolyamine͞plasmid DNA ratio. These domains respectively corresponded to negatively, neutrally, and positively charged complexes. Transmission electron microscopy and x-ray scattering experiments on complexes originating from these three domains showed that although their morphology depends on the lipopolyamine͞plasmid DNA ratio, their particle structure consists of ordered domains characterized by even spacing of 80 Å, irrespective of the lipid͞DNA ratio. The most active lipopolyamine͞DNA complexes for gene transfer were positively charged. They were characterized by fully condensed DNA inside spherical particles (diameter: 50 nm) sandwiched between lipid bilayers. These results show that supercoiled plasmid DNA is able to transform lipopolyamine micelles into a supramolecular organization characterized by ordered lamellar domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.