Although the generation of reactive oxygen species is an activity normally associated with phagocytic leucocytes, mammalian spermatozoa were, in fact, the first cell type in which this activity was described. In recent years it has become apparent that spermatozoa are not the only nonphagocytic cells to exhibit a capacity for reactive oxygen species production, because this activity has been detected in a wide variety of different cells including fibroblasts, mesangial cells, oocytes, Leydig cells, endothelial cells, thyroid cells, adipocytes, tumour cells and platelets. Since the capacity to generate reactive oxygen species is apparently so widespread, the risk-benefit equation for these potentially pernicious molecules becomes a matter of intense interest. In the case of human spermatozoa, the risk of manufacturing reactive oxygen metabolites is considerable because these cells are particularly vulnerable to lipid peroxidation. Indeed, there is now good evidence to indicate that oxygen radicals are involved in the initiation of peroxidative damage to the sperm plasma membrane, seen in many cases of male infertility. This risk is off-set by recent data suggesting that superoxide anions and hydrogen peroxide also participate in the induction of key biological events such as hyperactivated motility and the acrosome reaction. Thus, human spermatozoa appear to use reactive oxygen species for a physiological purpose and have the difficult task of ensuring the balanced generation of these potentially harmful, but biologically important, modulators of cellular function.
Patients with primary biliary cirrhosis develop progressive ductopenia associated with the production of antimitochondrial antibodies that react with a protein aberrantly expressed on biliary epithelial cells and peri-hepatic lymph nodes. Although no specific microbe has been identified, it is thought that an infectious agent triggers this autoimmune liver disease in genetically predisposed individuals. Previous serologic studies have provided evidence to suggest a viral association with primary biliary cirrhosis. Here we describe the identification of viral particles in biliary epithelium by electron microscopy and the cloning of exogenous retroviral nucleotide sequences from patients with primary biliary cirrhosis. The putative agent is referred to as the human betaretrovirus because it shares close homology with the murine mammary tumor virus and a human retrovirus cloned from breast cancer tissue. In vivo, we have found that the majority of patients with primary biliary cirrhosis have both RT-PCR and immunohistochemistry evidence of human betaretrovirus infection in lymph nodes. Moreover, the viral proteins colocalize to cells demonstrating aberrant autoantigen expression. In vitro, we have found that lymph node homogenates from patients with primary biliary cirrhosis can induce autoantigen expression in normal biliary epithelial cells in coculture. Normal biliary epithelial cells also develop the phenotypic manifestation of primary biliary cirrhosis when cocultivated in serial passage with supernatants containing the human betaretrovirus or the murine mammary tumor virus, providing a model to test Koch's postulates in vitro.
Objective-To determine whether the quality of semen has changed in a group of over 500 Scottish men born between 1951 and 1973. Design-Retrospective review of data on semen quality collected in a single laboratory over 11 years and according to World Health Organisation guidelines.Setting-Programme of gamete biology research funded by Medical Research Council.Subjects-577 volunteer semen donors. Of these, 171 were born before 1959, 120 were born in 1960-4, 171 in 1965-9, and 115 in 1970-4. Main outcome measures-Conventional criteria of semen quality including semen volume (ml), sperm concentration (106/ml), overall motility (0/% motile), total number ofsperm in the ejaculate (106), and total number ofmotile sperm in the ejaculate (10').
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.