We investigate the opto-electronic properties of hexagonal boron nitride grown by high temperature plasma-assisted molecular beam epitaxy. We combine atomic force microscopy, spectroscopic ellipsometry, and photoluminescence spectroscopy in the deep ultraviolet to compare the quality of hexagonal boron nitride grown either on sapphire or highly oriented pyrolytic graphite. For both substrates, the emission spectra peak at 235 nm, indicating the high optical quality of hexagonal boron nitride grown by molecular beam epitaxy. The epilayers on highly oriented pyrolytic graphite demonstrate superior performance in the deep ultraviolet (down to 210 nm) compared to those on sapphire. These results reveal the potential of molecular beam epitaxy for the growth of hexagonal boron nitride on graphene, and more generally, for fabricating van der Waals heterostructures and devices by means of a scalable technology. LETTEROriginal content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
Lattice-matched graphene on hexagonal boron nitride is expected to lead to the formation of a band gap but requires the formation of highly strained material and has not hitherto been realized. We demonstrate that aligned, lattice-matched graphene can be grown by molecular beam epitaxy using substrate temperatures in the range 1600-1710 °C and coexists with a topologically modified moiré pattern with regions of strained graphene which have giant moiré periods up to ∼80 nm. Raman spectra reveal narrow red-shifted peaks due to isotropic strain, while the giant moiré patterns result in complex splitting of Raman peaks due to strain variations across the moiré unit cell. The lattice-matched graphene has a lower conductance than both the Frenkel-Kontorova-type domain walls and also the topological defects where they terminate. We relate these results to theoretical models of band gap formation in graphene/boron nitride heterostructures.
We have investigated the adsorption of hexacontane (C 60 H 122 ) on hexagonal boron nitride (hBN) using atomic force microscopy (AFM). The molecules can be deposited either by sublimation or from solution and form lamellar rows with dimensions of the order of 0.1−1 μm in three different rotational domains. High-resolution AFM images reveal that, similar to alkanes on graphite, the molecules are adsorbed parallel to the lattice vectors of hBN and we show using molecular mechanics that this corresponds to the lowest energy configuration. Lamellar rows with the same periodicity are observed even when several layers of hexacontane are deposited, although there is some orientational disorder in these multilayers. We also observe heat-induced modification of hexacontane, including recrystallization. We compare our results with recent X-ray studies of alkane adsorption on hBN and discuss the possible role of alkanes on steering molecular self-assembly on hBN.
We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, which diffuses through the walls of a Joule-heated tantalum tube filled with graphite powder. We demonstrate deposition of carbon on sapphire with carbon deposition rates up to 12 nm/h. Atomic force microscopy measurements reveal the formation of hexagonal moiré patterns when graphene monolayers are grown on hBN flakes. The Raman spectra of the graphene layers grown on hBN and sapphire with the sublimation carbon source and the atomic carbon source are similar, whilst the nature of the carbon aggregates is different - graphitic with the sublimation carbon source and amorphous with the atomic carbon source. At MBE growth temperatures we observe etching of the sapphire wafer surface by the flux from the atomic carbon source, which we have not observed in the MBE growth of graphene with the sublimation carbon source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.