Specification of pattern is fundamental to the development of a multicellular organism. The Malpighian (renal) tubule of Drosophila melanogaster is a simple epithelium that proliferates under the direction of a single tip cell into three morphologically distinct domains. However, systematic analysis of a panel of over 700 P{GAL4} enhancer trap lines reveals unexpected richness for such an apparently simple tissue. Using numerical analysis, it was possible formally to reconcile apparently similar or complementary expression domains and thus to define at least five genetically defined domains and multiple cell types. Remarkably, the positions of domain boundaries and the numbers of both principal and secondary (''stellate'') cell types within each domain are reproducible to near single-cell precision between individual animals. Domains of physiological function were also mapped using transport or expression assays. Invariably, they respect the boundaries defined by enhancer activity. These genetic domains can also be visualized in vivo, both in transgenic and wild-type f lies, providing an ''identified cell'' system for epithelial physiology. Building upon recent advances in Drosophila Malpighian tubule physiology, the present study confirms this tissue as a singular model for integrative physiology.
The central complex is an important center for higher-order brain function in insects. It is an intricate neuropil composed of four substructures. Each substructure contains repeated neuronal elements which are connected by processes such that topography is maintained. Although the neuronal architecture has been described in several insects and the behavioral role investigated in various experiments, the exact function of this neuropil has proven elusive. To describe the architecture of the central complex, we study 15 enhancer-trap lines that label various ellipsoid body neuron types. We find evidence for restriction of gene expression that is correlated with specific neuronal types: such correlations suggest functional classifications as well. We show that some enhancer-trap patterns reveal a single ellipsoid body neuron type, while others label multiple types. We describe the development of the ellipsoid body neuropil in wild-type animals and propose developmental mechanisms based on animals displaying structural mutations of this neuropil. The experiments performed here demonstrate the degree of resolution possible from the analysis of enhancer-trap lines and form a useful library of tools for future structure/function studies of the ellipsoid body.
We describe the Pan-STARRS Moving Object Processing System (MOPS), a modern software package that produces automatic asteroid discoveries and identifications from catalogs of transient detections from next-generation astronomical survey telescopes. MOPS achieves > 99.5% efficiency in producing orbits from a synthetic but realistic population of asteroids whose measurements were simulated for a Pan-STARRS4-class telescope. Additionally, using a non-physical grid population, we demonstrate that MOPS can detect populations of currently unknown objects such as interstellar asteroids. MOPS has been adapted successfully to the prototype Pan-STARRS1 telescope despite differences in expected false detection rates, fill-factor loss and relatively sparse observing cadence compared to a hypothetical Pan-STARRS4 telescope and survey. MOPS remains >99.5% efficient at detecting objects on a single night but drops to 80% efficiency at producing orbits for objects detected on multiple nights. This loss is primarily due to configurable MOPS processing limits that are not yet tuned for the Pan-STARRS1 mission. The core MOPS software package is the product of more than 15 person-years of software development and incorporates countless additional years of effort in third-party software to perform lower-level functions such as spatial searching or orbit determination. We describe the high-level design of MOPS and essential subcomponents, the suitability of MOPS for other survey programs, and suggest a road map for future MOPS development.Comment: 57 Pages, 26 Figures, 13 Table
Wide-field surveys for transiting planets are well suited to searching diverse stellar populations, enabling a better understanding of the link between the properties of planets and their parent stars. We report the discovery of HAT-P-69 b (TOI 625.01) and HAT-P-70 b (TOI 624.01), two new hot Jupiters around A stars from the Hungarian-made Automated Telescope Network (HATNet) survey that have also been observed by the Transiting Exoplanet Survey Satellite. HAT-P-69 b has a mass of-+ 3.58 0.58 0.58 M Jup and a radius of-+ 1.676 0.033 0.051 R Jup and resides in a prograde 4.79 day orbit. HAT-P-70 b has a radius of-+ 1.87 0.10 0.15 R Jup and a mass constraint of s <6.78 3 ()M Jup and resides in a retrograde 2.74 day orbit. We use the confirmation of these planets around relatively massive stars as an opportunity to explore the occurrence rate of hot Jupiters as a function of stellar mass. We define a sample of 47,126 main-sequence stars brighter than T mag =10 that yields 31 giant planet candidates, including 18 confirmed planets, 3 candidates, and 10 false positives. We find a net hot Jupiter occurrence rate of 0.41±0.10% within this sample, consistent with the rate measured by Kepler for FGK stars. When divided into stellar mass bins, we find the occurrence rate to be 0.71±0.31% for G stars, 0.43±0.15% for F stars, and 0.26±0.11% for A stars. Thus, at this point, we cannot discern any statistically significant trend in the occurrence of hot Jupiters with stellar mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.