Several arylsulphonamides of the configuration, 4-X-C6H4SO2NH2 (where X= H; CH3; C2H5;
F; Cl; Br; I or NO2) and i-X, j-YC6H3SO2NH2 (where i-X, j-Y=2,3-(CH3)2; 2,4-(CH3)2; 2,5-(CH3)2;
2-CH3,4-Cl; 2-CH3,5-Cl; 3-CH3,4-Cl; 2,4-Cl2 or 3,4-Cl2) were prepared, and their infrared spectra were measured in the solid state. The NMR spectra were recorded in solution. N-H asymmetric and symmetric stretching vibrations absorb in the ranges, 3390 - 3323 cm-1 and 3279 - 3229 cm-1,
respectively. Asymmetric and symmetric SO2 stretching vibrations appear as strong absorption lines in the ranges, 1344 - 1317 cm-1 and 1187 - 1147 cm-1, respectively. Sulphonamides exhibit S-N stretching vibrational absorptions in the range, 924 - 906 cm-1. The effect of substitution in
the phenyl ring in terms of electron withdrawing and electron donating groups could not be generalised, as the effect is non-systematic. The chemical shift is highly dependent on the electron density around the nucleus or associated with the atom to which it is bonded. Hence empirical
correlations relating the chemical shifts to the structures have been discussed. The chemical shifts of aromatic protons and carbons in all the arylsulphonamides have been calculated by adding substituent contributions to the shift of benzene, the principle of substituent addition. Considering the approximation made, the agreement between the calculated and experimental chemical shift values is reasonably good. Generally, electron-withdrawing groups shows high chemical
shifts compared to electron-donating groups.
In an effort to introduce N-chloroarylsulphonamides of different oxydising strengths, sixteen sodium salts of N-chloro-mono- and di-substituted benzenesulphonamides of the configuration, 4- X-C6H4SO2NaNCl (where X = H; CH3; C2H5; F; Cl; Br; I or NO2) and i-X, j-YC6H3SO2NaNCl (where i-X, j-Y = 2,3-(CH3)2; 2,4-(CH3)2; 2,5-(CH3)2; 2-CH3,4-Cl; 2-CH3,5-Cl; 3-CH3,4-Cl; 2,4- Cl2 or 3,4-Cl2) are prepared, characterized through their infrared spectra in the solid state and NMR spectra in solution. The υN-Cl frequencies vary in the range 950 - 927 cm−1. Effects of substitution in the benzene ring in terms of electron donating and electron withdrawing groups have been considered, and conclusions drawn. The chemical shifts of aromatic protons and carbon-13 in all the N-chloroarylsulphonamides have been calculated by adding substituent contributions to the shift of benzene. Considering the approximation employed the agreement between the calculated and experimental chemical shift values for different protons or carbon-13 is quite good. Effects of phenyl ring substitution on chemical shift values of both 1H and 13C are also graphically represented in terms of line diagrams.
The effect of substitution in the phenyl ring on the γ (35Cl NQR) of N-Cl bonds of the N-chloroand N,N-dichloro-arylsulphonamides has been studied and correlated. The correlation of 35Cl NQR spectra of both the N-chloro and N,N-dichloro-arylsulphonamides is exceedingly good, although there was no systematic variation in the frequencies with substituents in the phenyl ring. The effect of substitution on the C-35Cl NQR of the phenyl ring has also been correlated. The deviation here is also not systematic due to the fact that the chemically equivalent chlorine atoms may exhibit different NQR frequencies due to crystal field effect. Finally, γ (C - 35Cl NQR) of all the 4-chloro-1-substitutedbenzenes have been correlated through the line diagram.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.