Aluminum (Al)-containing calcium-deficient carbonated hydroxyapatites were produced by a precipitation method from aqueous solution with carbonate (0-6.1%) and aluminum (0.1-0.5%) concentrations close to those found in biological materials. Two series of apatites were prepared: one at pH 7.0 and another at pH 9. 0. High-resolution electron microscopy has shown that many of them possess structural defects such as screw dislocations, grain boundaries, and central defects. Samples with high carbonate content and high water and high Al(3+) content had a high amount of structural defects. Accordingly, a sample (7Al1) with a relatively high carbonate content (6.1%) and a sample (7Al6) without carbonate but with a relatively high water (2.0 mol) and Al(3+) content (0. 39%) presented the highest amount of structural defects, 54% and 47%, respectively. A sample (7Al13) with a low level of crystalline water (1 mol) and low carbonate (2.5%) showed a small amount of defects. The presence of water associated with Al(3+) induced a high number of crystals having a central defect with a great similarity to the so-called water layer of octacalcium phosphate (OCP). Observed images of all these crystals have shown good correspondence with the computer-simulated image based on the crystal structure of hydroxyapatite, indicating that the addition of Al(3+) and carbonate does not perturb the apatitic structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.