We analysed two sites within and outside an urban development in a rural background to estimate the fungal richness, diversity and community composition in Quercus spp. ectomycorrhizas using massively parallel 454-sequencing in combination with DNAtagging. Our analyses indicated that shallow sequencing (150 sequences) of a large number of samples (192 in total) provided data that allowed identification of seasonal trends within the fungal communities: putative root-associated antagonists and saprobes that were abundant early in the growing season were replaced by common ectomycorrhizal fungi in the course of the growing season. Ordination analyses identified a number of factors that were correlated with the observed communities including host species as well as soil organic matter, nutrient and heavy metal enrichment. Overall, our application of the high throughput 454 sequencing provided an expedient means for characterization of fungal communities.
The sharing of species of ectomycorrhizal fungi (EMF) among different co-occurring host plant species could allow the formation of common mycorrhizal networks, which can alter plant-plant interactions and succession. Such sharing of EMF among woody species is thought to be common in many forests, but very few herbaceous plants form EMF, so they are assumed to be excluded from EMF networks in forests. We studied the EMF on roots of a common coniferous tree, Pinus sylvestris, and a co-occurring rare herbaceous perennial plant, Pulsatilla patens (Ranunculaceae), in northeastern Poland. We examined roots from co-occuring P. sylvestris and P. patens, visually classified EMF into morphotypes, studied tissue sections of mycorrhizal structures using compound microscopy, and used DNA sequencing to identify the fungi. On both host plant species, we observed EMF colonization, with colonized root tips exhibiting a swollen appearance, as well as a variety of colors and textures of fungal mycelium covering and emanating from those swollen tips. Sectioning and microscopic examination of an EMF morphotype common on P. patens confirmed the presence of a mantle and Hartig net, indicating the likely presence of functional ectomycorrhizal structures. The two most frequent EMF were Cenococcum geophilum and Piloderma olivaceum, and the latter was found to associate with both host plant species. Several EMF found here only on P. patens, including C. geophilum and two Russula species, are known from previous studies to also associate with P. sylvestris and other tree species. The observation of shared EMF between a coniferous tree and an understory herb indicates the potential for common mycorrhizal networks to alter interactions between these two species and may also indicate a unique way in which the distribution and abundance of a rare herbaceous plant may be influenced by shared mutualisms with a common co-occurring woody plant.
Addendum to: Jumpponen A, Jones K. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.