A central composite second-order response surface design was employed to determine the influences of added sodium chloride (0.8 to 3.6%), sodium diacetate (0 to 0.2%), potassium lactate syrup (0.25 to 9.25%), and finished-product moisture (45.5 to 83.5%) on the predicted growth rate of Listeria monocytogenes in cured ready-to-eat (RTE) meat products. Increased amounts of both sodium diacetate (P < 0.11) and potassium lactate (P < 0.001) resulted in significant reductions in the growth rate constants of L monocytogenes. Increased finished-product moisture (P < 0.11) significantly increased growth rate constants. The nfluence of sodium chloride was not statistically significant. The second-order statistical factor for lactate was significant (P < 0.01), but all two-way interactions were not. In general, predicted growth rates exceeded actual growth rates obtained from inoculation studies of four cured RTE meat products (wieners, smoked-cooked ham, light bologna, and cotto salami). The final model will be useful to food technologists in determining formulations that will result in finished cured RTE meat products in which L. monocytogenes is not likely to grow.
Contamination of luncheon meats by Listeria monocytogenes has resulted in outbreaks of listeriosis and major product recalls. Listeriae can survive on processing equipment such as meat slicers which serve as a potential contamination source. This study was conducted to determine (i) the dynamics of cross-contamination of L. monocytogenes from a commercial slicer and associated equipment onto sliced meat products, (ii) the influence of sample size on the efficacy of the BAX-PCR and U.S. Department of Agriculture-Food Safety and Inspection Service enrichment culture assays to detect L. monocytogenes on deli meat, and (iii) the fate of L. monocytogenes on sliced deli meats of different types during refrigerated storage. Three types of deli meats, uncured oven-roasted turkey, salami, and bologna containing sodium diacetate and potassium lactate, were tested. A five-strain mixture of L. monocytogenes was inoculated at ca.10(3) CFU onto the blade of a commercial slicer. Five consecutive meat slices were packed per package, then vacuum sealed, stored at 4 degrees C, and sampled at 1 and 30 days postslicing. Two sample sizes, 25 g and contents of the entire package of meat, were assayed. Total numbers of L. monocytogenes-positive samples, including the two sample sizes and two sampling times, were 80, 9, and 3 for turkey, salami, and bologna, respectively. A higher percentage of turkey meat samples were L. monocytogenes positive when contents of the entire package were assayed than when the 25-g sample was assayed (12.5 and 7.5%, respectively). Lower inoculum populations of ca. 10(1) or 10(2) CFU of L. monocytogenes on the slicer blade were used for an additional evaluation of oven-roasted turkey using two additional sampling times of 60 and 90 days postslicing. L. monocytogenes-positive samples were not detected until 60 days postslicing, and more positive samples were detected at 90 days than at 60 days postslicing. When BAX-PCR and enrichment culture assays were compared, 12, 8, and 2 L. monocytogenes-positive samples were detected by both the enrichment culture and BAX-PCR, BAX-PCR only, and enrichment culture only assays, respectively. The number of L. monocytogenes-positive samples and L. monocytogenes counts increased during storage of turkey meat but decreased for salami and bologna. Significantly more turkey samples were L. monocytogenes positive when the contents of the entire package were sampled than when 25 g was sampled. Our results indicate that L. monocytogenes can be transferred from a contaminated slicer onto meats and can survive or grow better on uncured oven-roasted turkey than on salami or bologna with preservatives. Higher L. monocytogenes cell numbers inoculated on the slicer blade resulted in more L. monocytogenes-positive sliced meat samples. In addition, the BAX-PCR assay was better than the enrichment culture assay at detecting L. monocytogenes on turkey meat (P < 0.05).
The effect of sodium benzoate (0.08 to 0.25%) in combination with different concentrations of sodium diacetate (0.05 to 0.15%) and NaClI (0.8 to 2%) and different finished product moisture (55 to 75%) on the growth of Listeria monocytogenes in ready-to-eat meat products was evaluated using a central composite design over 18 weeks of storage at 4 degrees C. The effects of these factors on time to growth were analyzed using a time-to-failure regression method. All main effects were significant except product moisture, which was significant when included in the two- and three-way interactions (P < 0.05). Sodium benzoate was more effective (lengthening time to growth) when used with increasing concentrations of sodium diacetate and salt and decreasing finished product moisture. The model indicated that low-moisture products, e.g., bologna or wieners, could have time-to-growth values longer than 18 weeks if they were formulated with 0.1% sodium benzoate and 0.1% sodium diacetate. Time to growth in high-moisture products, e.g., ham or cured turkey breast at 75% moisture, was predicted to be much shorter for the same basic formulation (0.1% sodium benzoate and 0.1% sodium diacetate). Consequently, high-moisture ready-to-eat products in which sodium benzoate is limited to 0.1% (current standard for generally recognized as safe) may need additional ingredients to effectively inhibit growth of L. monocytogenes.
The biocompatibility and levels of gentamicin released from a poly(lactic acid) (PLA) polymer system in the serum, milk and tissue of a food animal model were determined. Microsphere particles of PLA containing 6.7% (w/w) gentamicin were compressed into 5 mm beads onto suture. Three groups of three cull ewes each were implanted with a bead string of PLA/gentamicin in one caudal thigh (muscle) and PLA control beads in the opposite thigh for 2, 4 and 6 months. Milk and serum samples were obtained at regular intervals until sacrifice. Following sacrifice, implant sites, kidney, liver and skeletal muscle were sampled for gentamicin concentration and histologic evaluation. Serum gentamicin peaked by day 1 (up to 0.7 μg/mL) and decreased to near zero by day 16 in all groups. Milk levels were measurable (>0.01 μg/mL) only on 2 days, in one sheep. Kidney gentamicin levels approached 2 ppm, and liver gentamicin levels approached 1 ppm in the 6-month group. A mild to moderate foreign body reaction was seen histologically in all PLA/gentamicin and PLA control implantation sites. Gentamicin released from this implanted polymer system produced low serum and milk concentrations, but developed renal accumulation beyond tolerated levels (30 ppb). Polymer/antibiotic delivery systems show promise for the treatment of local infections in veterinary patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.