1. The products of the lactoperoxidase-catalysed oxidation of thiocyanate by hydrogen peroxide were sulphate, carbon dioxide and ammonia. Cyanate, sulphite and a compound showing increased extinction at 235mmu (the ;235 compound') were intermediate oxidation products. 2. Two of the intermediates acted as electron acceptors in the oxidation of NADH(2). Thus NADH(2) was oxidized by sulphite in the presence of lactoperoxidase (EC 1.11.1.7) and Mn(2+) and by the ;235 compound' in the presence of an enzyme, the NADH(2)-oxidizing enzyme, present in extracts of lactoperoxidase-resistant streptococci. Sulphur dicyanide also acted as an electron acceptor in the latter reaction. The ;235 compound' was also reduced non-enzymically by sulphite. 3. The glycolysis of lactoperoxidasesensitive streptococci suspended in glucose solution was not inhibited by sulphite, cyanate, cyanide or the ;235 compound' but was inhibited by sulphur dicyanide. The inhibition by 0.1mm-sulphur dicyanide could be reversed, as could that caused by lactoperoxidase, thiocyanate and hydrogen peroxide, by washing the cells or by the addition of a cell-free extract of a lactoperoxidase-resistant streptococcus. 4. The effects of 0.1mm-sulphur dicyanide on catabolic enzymes of resting streptococci were very similar to those of the lactoperoxidase-thiocyanate-hydrogen peroxide system. Thus hexokinase was completedly inhibited, glucose 6-phosphate dehydrogenase and aldolase were partially inhibited and phosphohexokinase was little affected in both cases.
1. The growth of the lactoperoxidase-sensitive Streptococcus cremoris 972 in a synthetic medium was inhibited by lactoperoxidase and thiocyanate. The glycolysis and oxygen uptake of suspensions of Strep. cremoris 972 in glucose or lactose were also inhibited. The lactoperoxidase-resistant Strep. cremoris 803 was not inhibited under these conditions but was inhibited in the absence of a source of energy. 2. Lactoperoxidase (EC 1.11.1.7), thiocyanate and hydrogen peroxide completely inhibited the hexokinases of non-metabolizing suspensions of both strains. The inhibition was reversible, hexokinase and glycolytic activities of Strep. cremoris 972 being restored by washing the cells free from inhibitor. The aldolase and 6-phosphogluconate-dehydrogenase activities of Strep. cremoris 972 were partially inhibited but several other enzymes were unaffected. 3. The resistance of Strep. cremoris 803 to inhibition was not due to the lack of hydrogen peroxide formation, to the destruction of peroxide, to the inactivation of lactoperoxidase or to the operation of alternative pathways of carbohydrate metabolism. 4. A ;reversal factor', which was partially purified from extracts of Strep. cremoris 803, reversed the inhibition of glycolysis of Strep. cremoris 972. The ;reversal factor' also catalysed the oxidation of NADH(2) in the presence of an intermediate oxidation product of thiocyanate and was therefore termed the NADH(2)-oxidizing enzyme. 5. The NADH(2)-oxidizing enzyme was present in lactoperoxidase-resistant streptococci but was absent from lactoperoxidase-sensitive streptococci.
SUMMARYThe specificities of adsorption and multiplication of phages attacking some strains of lactic streptococci (serological group N) were investigated. At multiplicities of infection (m.o.i.) of o. I to I p.f.u./coccus, the specificity of adsorption was similar to that of multiplication, but some strains also adsorbed one or more h¢terotogous phages. At m.o.i. ~ IOO both homologous and heterologous strains of streptococci were lysed from without. The specificity of adsorption to cell walls was the same as to whole cocci and, with the exception of 2 phages, was irreversible at 3o °. Three types of phage receptors, with different specificities, were recognized in the cell wall. Extraction of streptococci with lipid-solvents did not affect the adsorption of those phages which were irreversibly adsorbed to cell walls but reduced the adsorption of other phages. The plasma membrane of Streptococcus lactis strain ML 3, but not the cell wall, inactivated phage ml 3 but not heterologous phages in the presence of electrolytes. The plasma membrane of a phage-resistant mutant of this strain did not inactivate phage although it was similar in chemical composition to that of the parent strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.