The combined result of the five trials has demonstrated the efficacy of hyperthermia as an adjunct to radiotherapy for treatment of recurrent breast cancer. The implication of these encouraging results is that hyperthermia appears to have an important role in the clinical management of this disease, and there should be no doubt that further studies of the use of hyperthermia are warranted.
The AMC-8 system is capable of 3-D SAR control and its SAR distribution is more favourable than for the 2-D AMC-4 system. This result promises improvement in clinical tumour temperatures.
The Technical Committee and the Clinical Committee of the ESHO evaluated the experience of the institutes which are active in clinical regional hyperthermia using radiative equipment. Based on this evaluation, QA guidelines have been formulated. The focus of these guidelines lies on what must be done not on how it should be done. Subjects covered are: treatment planning, treatment, treatment documentation, requirements and characterization of equipment, safety aspects, hyperthermia staff requirements and instrumentation for quality assurance.
In regional hyperthermia, optimization techniques are valuable in order to obtain amplitude/phase settings for the applicators to achieve maximal tumour heating without toxicity to normal tissue. We implemented a temperature-based optimization technique and maximized tumour temperature with constraints on normal tissue temperature to prevent hot spots. E-field distributions are the primary input for the optimization method. Due to computer limitations we are restricted to a resolution of 1 x 1 x 1 cm3 for E-field calculations, too low for reliable treatment planning. A major problem is the fact that hot spots at low-resolution (LR) do not always correspond to hot spots at high-resolution (HR), and vice versa. Thus, HR temperature-based optimization is necessary for adequate treatment planning and satisfactory results cannot be obtained with LR strategies. To obtain HR power density (PD) distributions from LR E-field calculations, a quasi-static zooming technique has been developed earlier at the UMC Utrecht. However, quasi-static zooming does not preserve phase information and therefore it does not provide the HR E-field information required for direct HR optimization. We combined quasi-static zooming with the optimization method to obtain a millimetre resolution temperature-based optimization strategy. First we performed a LR (1 cm) optimization and used the obtained settings to calculate the HR (2 mm) PD and corresponding HR temperature distribution. Next, we performed a HR optimization using an estimation of the new HR temperature distribution based on previous calculations. This estimation is based on the assumption that the HR and LR temperature distributions, though strongly different, respond in a similar way to amplitude/phase steering. To verify the newly obtained settings, we calculate the corresponding HR temperature distribution. This method was applied to several clinical situations and found to work very well. Deviations of this estimation method for the AMC-4 system were typically smaller than 0.2 degrees C in the volume of interest, which is accurate enough for treatment planning purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.