1. Background & purposeInvestigate the applicability of a series of detectors in small field dosimetry and the possible differences between their responses to FF and FFF beams. This work extends upon the series of detectors used by other authors to also include metal-oxide-semiconductor field-effect transistors (MOSFETs) detectors and radiochromic film. We also included a later correction of output factors (OFs) recommended by the recently published IAEA´s code of practice TRS 483 on dosimetry of small static fields used in external beam radiotherapy.2. Materials & methodsThe OFs, profiles, and PDDs of 6 MV and 6 MV FFF beams were measured with 11 different detectors using field sizes between 0.6 × 0.6 cm2 and 10 × 10 cm2.3. ResultsThe OFs of the FFF beams were lower than those of the FF beams for field sizes larger than 3 × 3 cm2 but higher for field sizes smaller than 3 × 3 cm2. After applying the IAEA´s TRS 483 corrections, the final OFs were compatible with our initial results when considering uncertainties involved. Small-volume detectors are preferable for measuring the penumbra of these small fields where this attribute is higher in the crossline direction than in the inline direction. The R100 of equivalent-quality FFF beams was higher compared to the corresponding flattened beams.4. ConclusionsWe observed no difference for the dose responses between 6 MV and 6 MV FFF beams for any of the detectors. OF results, profiles and PDDs were clearly consistent with the previously published literature regarding the Versa HD linac. Correcting our first OFs, taken as ratio of detector charges, with the IAEA´s TRS 483 corrections to obtain the final OFs, did not make the former significantly different.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.