A four-parameter class of exact asymptotically flat solutions of the Einstein-Maxwell equations involving only rational functions is presented. It is able to describe the exterior field of a slowly or rapidly rotating neutron star with poloidal magnetic field.
The results of our previous paper are applied to solving analytically the balance problem in the double-Kerr solution for
all three possible types of binary systems, i.e. when a binary
system is composed of two non-extreme black holes, of a
non-extreme black hole and a hyperextreme object and of two
hyperextreme objects. We also construct a new stationary
electrovacuum metric representing binary systems of charged,
magnetized, rotating, aligned masses involving one extreme object
and on the basis of the numerical study of balance equations we
conjecture that the equilibrium states in such systems are
impossible.
A new six-parametric, axisymmetric and asymptotically flat exact solution of Einstein-Maxwell field equations having reflection symmetry is presented. It has arbitrary physical parameters of mass, angular momentum, mass-quadrupole moment, current octupole moment, electric charge and magnetic dipole, so it can represent the exterior field of a rotating, deformed, magnetized and charged object; some properties of the closed-form analytic solution such as its multipolar structure, electromagnetic fields and singularities are also presented. In the vacuum case, this analytic solution is matched to some numerical interior solutions representing neutron stars, calculated by Berti & Stergioulas [1], imposing that the multipole moments be the same. As an independent test of accuracy of the solution to describe exterior fields of neutron stars, we present an extensive comparison of the radii of innermost stable circular orbits (ISCOs)
Built-up on top of ancient lake deposits, Mexico City experiences some of the largest seismic site effects worldwide. Besides the extreme amplification of seismic waves, duration of intense ground motion from large subduction earthquakes exceeds three minutes in the lake-bed zone of the basin, where hundreds of buildings collapsed or were seriously damaged during the magnitude 8.0 Michoacán earthquake in 1985. Different mechanisms contribute to the long lasting motions, such as the regional dispersion and multiple-scattering of the incoming wavefield from the coast, more than 300 km away the city. By means of high performance computational modeling we show that, despite the highly dissipative basin deposits, seismic energy can propagate long distances in the deep structure of the valley, promoting also a large elongation of motion. Our simulations reveal that the seismic response of the basin is dominated by surface-waves overtones, and that this mechanism increases the duration of ground motion by more than 170% and 290% of the incoming wavefield duration at 0.5 and 0.3 Hz, respectively, which are two frequencies with the largest observed amplification. This conclusion contradicts what has been previously stated from observational and modeling investigations, where the basin itself has been discarded as a preponderant factor promoting long and devastating shaking in Mexico City.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.