Replacing toxic, wild-type Neotyphodium coenophialum-infected tall fescue (E+) with nontoxic, N. coenophialum-infected tall fescue (NE+) has improved cow performance, but producer acceptance of NE+ has been slow. The objective was to compare performance by spring- and fall-calving cows grazing either E+ or NE+ at different percentages of the total pasture area. Gelbvieh×Angus crossbred cows (n=178) were stratified by BW and age within calving season and allocated randomly to 1 of 14 groups representing 5 treatments for a 3-yr study: i) Fall-calving on 100% E+ (F100); ii) Spring-calving on 100% E+ (S100); iii) Fall-calving on 75% E+ and 25% NE+ (F75); iv) Spring-calving on 75% E+ and 25% NE+ (S75); and v) Spring-calving on 100% NE+ (SNE100). Groups allocated to F75 and S75 grazed E+ until approximately 28 d before breeding and weaning, then were then moved to their respective NE+ pasture area for 4 to 6 wk; those allocated to F100, S100, and SNE100 grazed their pastures throughout the entire year. Samples of tall fescue were gathered from specific cells within each pasture at the time cows were moved into that particular cell (∼1 sample/mo). Blood samples were collected from the cows at the start and end of the breeding season. Stocking rate for each treatment was 1 cow/ha. Forage IVDMD, CP, and total ergot alkaloid concentrations were affected (P<0.05) by the treatment×sampling date interaction. Hay offered, cow BW, and BCS at breeding, end of breeding, and at weaning were greater (P<0.05) from fall-calving vs. spring-calving. Cow BW at weaning was greater (P<0.05) from F75 and S75 vs. F100 and S100. The calving season×NE+ % interaction affected (P<0.05) calving rates. Preweaning calf BW gain, actual and adjusted weaning BW, ADG, sale price, and calf value at weaning were greater (P<0.05) from fall-calving vs. spring-calving and from SNE100 vs. S75 except for sale price which was greater (P<0.05) from S75 vs. SNE100. Cow concentrations of serum prolactin at breeding and serum NEFA at the end of breeding were affected (P<0.05) by the calving season×NE+ % interaction. Serum Zn and Cu concentrations from cows were affected (P<0.05) by calving season. A fall-calving season may be more desirable for cows grazing E+, resulting in greater calving rates, cow performance, and calf BW at weaning, whereas limited access to NE+ may increase calving rates, serum prolactin, and NEFA concentrations during certain times in the production cycle, particularly in spring-calving cows.
The objectives of this study were to explore the usefulness of blood-based traits as indicators of health and performance in beef cattle at weaning and identify the genetic basis underlying the different blood parameters obtained from complete blood counts (CBCs). Disease costs represent one of the main factors determining profitability in animal production. Previous research has observed associations between blood cell counts and an animal's health status in some species. CBC were recorded from approximately 570 Angus based, crossbred beef calves at weaning born between 2015 and 2016 and raised on toxic or novel tall fescue. The calves (N = ∼600) were genotyped at a density of 50k SNPs and the genotypes (N = 1160) were imputed to a density of 270k SNPs. Genetic parameters were estimated for 15 blood and 4 production. Finally, with the objective of identifying the genetic basis underlying the different blood-based traits, genome-wide association studies (GWAS) were performed for all traits. Heritability estimates ranged from 0.11 to 0.60, and generally weak phenotypic correlations and strong genetic correlations were observed among bloodbased traits only. Genome-wide association study identified ninety-one 1-Mb windows that accounted for 0.5% or more of the estimated genetic variance for at least 1 trait with 21 windows overlapping across two or more traits (explaining more than 0.5% of estimated genetic variance for two or more traits). Five candidate genes have been identified in the most interesting overlapping regions related to blood-based traits. Overall, this study represents one of the first efforts represented in scientific literature to identify the genetic basis of blood cell traits in beef cattle. The results presented in this study allow us to conclude that: (1) blood-based traits have weak phenotypic correlations but strong genetic correlations among themselves. (2) Blood-based traits have moderate to high heritability. (3) There is evidence of an important overlap of genetic control among similar blood-based traits which will allow for their use in improvement programs in beef cattle.
Beef cattle phenotypes are affected by the consumption of toxic fescue. Toxic fescue’s impact is dependent on heat stress and breed composition, with genetic variability for robustness to toxin exposure believed to exist within and across breeds. The study objective was to characterize the effect of fescue toxicosis across breeds for known and novel heat and fescue stress-associated phenotypes. One-hundred crossbred fall-calving Charolais- and Hereford-sired cows of parities 1–3 were allocated to graze either toxic fescue (n = 50), non-toxic fescue (n = 25), or a rotation between toxic and non-toxic fescue (n = 25) for 156 days. Phenotypes impacted by breed (genetics) included hair coat score (p < 0.0001), hair reduction/shedding rate (p < 0.05), rectal temperature (RT) (p < 0.0001), vaginal temperature (p < 0.05), serum phosphorus concentration (p < 0.02) and respiration rate (RR) (p < 0.003). Cows on toxic fescue experienced reduced hair shedding efficacy (p < 0.0001), higher vaginal temperatures (p < 0.0001), increased systolic blood pressure (p < 0.04), increased RR (p < 0.0001) and reduced average daily gain (p < 0.0001), compared to cows grazing non-toxic fescue. Calves born from cows with higher RT during the last third of gestation had higher RT at weaning (p < 0.02), indicating potential physiological effects of in utero heat stress. The study indicates that beef cows exhibit variable responses to toxic fescue within and across breeds which may impact future calf phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.