Observations support the idea that supermassive black holes (SMBHs) power the emission at the centre of active galaxies. However, contrary to stellar-mass BHs, there is a poor understanding of their origin and physical formation channel. In this article, we propose a new process of SMBH formation in the early Universe that is not associated with baryonic matter (massive stars) or primordial cosmology. In this novel approach, SMBH seeds originate from the gravitational collapse of fermionic dense dark matter (DM) cores that arise at the centre of DM haloes as they form. We show that such a DM formation channel can occur before star formation, leading to heavier BH seeds than standard baryonic channels. The SMBH seeds subsequently grow by accretion. We compute the evolution of the mass and angular momentum of the BH using a geodesic general relativistic disc accretion model. We show that these SMBH seeds grow to ∼109–$10^{10} \, \mathrm{M}_\odot$ in the first Gyr of the lifetime of the Universe without invoking unrealistic (or fine-tuned) accretion rates.
We analyze neutrino emission channels in energetic (≳1052 erg) long gamma-ray bursts within the binary-driven hypernova model. The binary-driven hypernova progenitor is a binary system composed of a carbon-oxygen star and a neutron star (NS) companion. The gravitational collapse leads to a type Ic supernova (SN) explosion and triggers an accretion process onto the NS. For orbital periods of a few minutes, the NS reaches the critical mass and forms a black hole (BH). Two physical situations produce MeV neutrinos. First, during the accretion, the NS surface emits neutrino–antineutrino pairs by thermal production. We calculate the properties of such a neutrino emission, including flavor evolution. Second, if the angular momentum of the SN ejecta is high enough, an accretion disk might form around the BH. The disk’s high density and temperature are ideal for MeV-neutrino production. We estimate the flavor evolution of electron and non-electron neutrinos and find that neutrino oscillation inside the disk leads to flavor equipartition. This effect reduces (compared to assuming frozen flavor content) the energy deposition rate of neutrino–antineutrino annihilation into electron–positron (e+e−) pairs in the BH vicinity. We then analyze the production of GeV-TeV neutrinos around the newborn black hole. The magnetic field surrounding the BH interacts with the BH gravitomagnetic field producing an electric field that leads to spontaneous e+e− pairs by vacuum breakdown. The e+e− plasma self-accelerates due to its internal pressure and engulfs protons during the expansion. The hadronic interaction of the protons in the expanding plasma with the ambient protons leads to neutrino emission via the decay chain of π-meson and μ-lepton, around and far from the black hole, along different directions. These neutrinos have energies in the GeV-TeV regime, and we calculate their spectrum and luminosity. We also outline the detection probability by some current and future neutrino detectors.
The study of neutrino flavor oscillations in astrophysical sources has been boosted in the last two decades thanks to achievements in experimental neutrino physics and in observational astronomy. We here discuss two cases of interest in the modeling of short and long gamma-ray bursts: hypercritical, that is, highly super-Eddington spherical/disk accretion onto a neutron star/black hole.We show that in both systems, the ambient conditions of density and temperature imply the occurrence of neutrino flavor oscillations, with a relevant role of neutrino self-interactions. K E Y W O R D Sblack hole, gamma-ray bursts, neutrino flavor oscillations, neutron star 1 Astron. Nachr. / AN. 2019;340:935-944.www.an-journal.org
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.