Since the discovery of electrical activity of the brain, electroencephalographic (EEG) recordings constitute one of the most popular techniques of brain research. However, EEG signals are highly nonstationary and one should expect that averages of the cross-correlation coefficient, which may take positive and negative values with equal probability, (almost) vanish when estimated over long data segments. Instead, we found that the average zero-lag cross-correlation matrix estimated with a running window over the whole night of sleep EEGs, or of resting state during eyes-open and eyes-closed conditions of healthy subjects shows a characteristic correlation pattern containing pronounced nonzero values. A similar correlation structure has already been encountered in scalp EEG signals containing focal onset seizures. Therefore, we conclude that this structure is independent of the physiological state. Because of its pronounced similarity across subjects, we believe that it depicts a generic feature of the brain dynamics. Namely, we interpret this pattern as a manifestation of a dynamical ground state of the brain activity, necessary to preserve an efficient operational mode, or, expressed in terms of dynamical system theory, we interpret it as a "shadow" of the evolution on (or close to) an attractor in phase space. Nonstationary dynamical aspects of higher cerebral processes should manifest in deviations from this stable pattern. We confirm this hypothesis through a correlation analysis of EEG recordings of 10 healthy subjects during night sleep, 20 recordings of 9 epilepsy patients, and 42 recordings of 21 healthy subjects in resting state during eyes-open and eyes-closed conditions. In particular, we show that the estimation of deviations from the stationary correlation structures provides a more significant differentiation of physiological states and more homogeneous results across subjects.
The characterization of the functional network of the brain dynamics has become a prominent tool to illuminate novel aspects of brain functioning. Due to its excellent time resolution, such research is oftentimes based on electroencephalographic recordings (EEG). However, a particular EEG-reference might cause crucial distortions of the spatiotemporal interrelation pattern and may induce spurious correlations as well as diminish genuine interrelations originally present in the dataset. Here we investigate in which manner correlation patterns are affected by a chosen EEG reference. To this end we evaluate the influence of 7 popular reference schemes on artificial recordings derived from well controlled numerical test frameworks. In this respect we are not only interested in the deformation of spatial interrelations, but we test additionally in which way the time evolution of the functional network, estimated via some bi-variate interrelation measures, gets distorted. It turns out that the median reference as well as the global average show the best performance in most situations considered in the present study. However, if a collective brain dynamics is present, where most of the signals get correlated, these schemes may also cause crucial deformations of the functional network, such that the parallel use of different reference schemes seems advisable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.