and ensuring equitable COVID-19 vaccine access remains a national priority.* COVID-19 has disproportionately affected racial/ethnic minority groups and those who are economically and socially disadvantaged (1,2). Thus, achieving not just vaccine equality (i.e., similar allocation of vaccine supply proportional to its population across jurisdictions) but equity (i.e., preferential access and administration to those who have been most affected by COVID-19 disease) is an important goal. The CDC social vulnerability index (SVI) uses 15 indicators grouped into four themes that comprise an overall SVI measure, resulting in 20 metrics, each of which has national and state-specific county rankings. The 20 metric-specific rankings were each divided into lowest to highest tertiles to categorize counties as low, moderate, or high social vulnerability counties. These tertiles were combined with vaccine administration data for 49,264,338 U.S. residents in 49 states and the District of Columbia (DC) who received at least one COVID-19 vaccine dose during December 14, 2020-March 1, 2021. Nationally, for the overall SVI measure, vaccination coverage was higher (15.8%) in low social vulnerability counties than in high social vulnerability counties (13.9%), with the largest coverage disparity in the socioeconomic status theme (2.5 percentage points higher coverage in low than in high vulnerability counties). Wide state variations in equity across SVI metrics were found. Whereas in the majority of states, vaccination coverage was higher in low vulnerability counties, some states had equitable coverage at the county level. CDC, state, and local jurisdictions should continue to monitor vaccination coverage by SVI metrics to focus public health interventions to achieve equitable coverage with COVID-19 vaccine.COVID-19 vaccine administration data are reported to CDC by multiple entities via immunization information systems (IIS), the Vaccine Administration Management System, or direct data submission. † Vaccination coverage was defined as the number of residents who
Disparities in vaccination coverage by social vulnerability, defined as social and structural factors associated with adverse health outcomes, were noted during the first 2.5 months of the U.S. COVID-19 vaccination campaign, which began during mid-December 2020 (1). As vaccine eligibility and availability continue to expand, assuring equitable coverage for disproportionately affected communities remains a priority. CDC examined COVID-19 vaccine administration and 2018 CDC social vulnerability index (SVI) data to ascertain whether inequities in COVID-19 vaccination coverage with respect to county-level SVI have persisted, overall and by urbanicity. Vaccination coverage was defined as the number of persons aged ≥18 years (adults) who had received ≥1 dose of any Food and Drug Administration (FDA)-authorized COVID-19 vaccine divided by the total adult population in a specified SVI category. † SVI was examined overall and by its four themes (socioeconomic status, household composition and disability, racial/ethnic minority status and language, and housing type and transportation). Counties were categorized into SVI quartiles, in which quartile 1 (Q1) represented the lowest level of vulnerability and quartile 4 (Q4), the highest. Trends in vaccination coverage were assessed by SVI quartile and urbanicity, which was categorized as large central metropolitan, large fringe metropolitan (areas surrounding large cities, e.g., suburban), medium and small metropolitan, and nonmetropolitan counties. § During December 14, 2020-May 1, 2021, disparities in vaccination coverage by SVI increased, especially in large † Vaccination coverage was calculated by summing the number of vaccinated adults in each SVI category and dividing by the total adult population in the specified SVI category. Population denominators were obtained from the U.S. Census Bureau. § Urbanicity was defined on the basis of the 2013 National Center for Health Statistics urban-rural classification scheme. For this analysis, categories included large central metropolitan counties, large fringe metropolitan counties, medium and small metropolitan counties, and nonmetropolitan counties. Large central metropolitan counties are counties in metropolitan statistical areas (MSAs) with ≥1 million population; large fringe metropolitan counties are counties in MSAs with ≥1 million population that did not qualify as large central metropolitan counties; medium metropolitan counties are counties in MSAs with populations of 250,000-999,999; small metropolitan counties are counties in MSAs with populations <250,000; nonmetropolitan counties are all micropolitan and noncore counties. https://www.cdc.gov/nchs/data_access/urban_rural.htm fringe metropolitan (e.g., suburban) and nonmetropolitan counties. By May 1, 2021, vaccination coverage was lower among adults living in counties with the highest overall SVI; differences were most pronounced in large fringe metropolitan (Q4 coverage = 45.0% versus Q1 coverage = 61.7%) and nonmetropolitan (Q4 = 40.6% versus Q1 = 52.9%) counties. ...
BackgroundTraditional influenza surveillance relies on influenza-like illness (ILI) syndrome that is reported by health care providers. It primarily captures individuals who seek medical care and misses those who do not. Recently, Web-based data sources have been studied for application to public health surveillance, as there is a growing number of people who search, post, and tweet about their illnesses before seeking medical care. Existing research has shown some promise of using data from Google, Twitter, and Wikipedia to complement traditional surveillance for ILI. However, past studies have evaluated these Web-based sources individually or dually without comparing all 3 of them, and it would be beneficial to know which of the Web-based sources performs best in order to be considered to complement traditional methods.ObjectiveThe objective of this study is to comparatively analyze Google, Twitter, and Wikipedia by examining which best corresponds with Centers for Disease Control and Prevention (CDC) ILI data. It was hypothesized that Wikipedia will best correspond with CDC ILI data as previous research found it to be least influenced by high media coverage in comparison with Google and Twitter.MethodsPublicly available, deidentified data were collected from the CDC, Google Flu Trends, HealthTweets, and Wikipedia for the 2012-2015 influenza seasons. Bayesian change point analysis was used to detect seasonal changes, or change points, in each of the data sources. Change points in Google, Twitter, and Wikipedia that occurred during the exact week, 1 preceding week, or 1 week after the CDC’s change points were compared with the CDC data as the gold standard. All analyses were conducted using the R package “bcp” version 4.0.0 in RStudio version 0.99.484 (RStudio Inc). In addition, sensitivity and positive predictive values (PPV) were calculated for Google, Twitter, and Wikipedia.ResultsDuring the 2012-2015 influenza seasons, a high sensitivity of 92% was found for Google, whereas the PPV for Google was 85%. A low sensitivity of 50% was calculated for Twitter; a low PPV of 43% was found for Twitter also. Wikipedia had the lowest sensitivity of 33% and lowest PPV of 40%.ConclusionsOf the 3 Web-based sources, Google had the best combination of sensitivity and PPV in detecting Bayesian change points in influenza-related data streams. Findings demonstrated that change points in Google, Twitter, and Wikipedia data occasionally aligned well with change points captured in CDC ILI data, yet these sources did not detect all changes in CDC data and should be further studied and developed.
Massive formalin-fixed, paraffin-embedded (FFPE) tissue archives exist worldwide, representing an invaluable resource for clinical proteomics research. However, current protocols for FFPE proteomics lack standardization, efficiency, reproducibility, and scalability. Here we present high-yield protein extraction and recovery by direct solubilization (HYPERsol), an optimized workflow using ultrasonication and S-Trap sample processing that enables proteome coverage and quantification from FFPE samples comparable to that achieved from flash-frozen tissue (average R = 0.936). When applied to archival samples, HYPERsol resulted in high-quality data from FFPE specimens in storage for up to 17 years, and may enable the discovery of new immunohistochemical markers.
Purpose Early COVID-19 mitigation relied on people staying home except for essential trips. The ability to stay home may differ by sociodemographic factors. We analyzed how factors related to social vulnerability impact a community's ability to stay home during a stay-at-home order. Methods Using generalized, linear mixed models stratified by stay-at-home order (mandatory or not mandatory), we analyzed county-level stay-at-home behavior (inferred from mobile devices) during a period when a majority of United States counties had stay-at-home orders (April 7–April 20, 2020) with the Centers for Disease Control and Prevention Social Vulnerability Index (CDC SVI). Results Counties with higher percentages of single-parent households, mobile homes, and persons with lower educational attainment were associated with lower stay-at-home behavior compared with counties with lower respective percentages. Counties with higher unemployment, higher percentages of limited-English-language speakers, and more multi-unit housing were associated with increases in stay-at-home behavior compared with counties with lower respective percentages. Stronger effects were found in counties with mandatory orders. Conclusions Sociodemographic factors impact a community's ability to stay home during COVID-19 stay-at-home orders. Communities with higher social vulnerability may have more essential workers without work-from-home options or fewer resources to stay home for extended periods, which may increase risk for COVID-19. Results are useful for tailoring messaging, COVID-19 vaccine delivery, and public health responses to future outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.