We report on the generation of ultrabroadband supercontinuum (SC) by filamentation of two optical-cycle, carrier-envelope phase-stable pulses at 2 μm in fused silica, sapphire, CaF₂ and YAG. The SC spectra extend from 450 nm to more than 2500 nm, and their particular shapes depend on dispersive properties of the materials. Prior to spectral super-broadening, we observe third-harmonic generation, which occurs in the condition of large phase and group velocity mismatch and consists of free and driven components. A double-peaked third-harmonic structure coexists with the SC pulse as demonstrated by the numerical simulations and verified experimentally. The SC pulses have stable carrier envelope phase with short-term rms fluctuations of ∼ 300 mrad, as simultaneously measured in YAG crystal by f-2f and f-3f interferometry, where the latter makes use of intrinsic third-harmonic generation.
We study cavitation dynamics when focusing ring-shaped femtosecond laser beams in water. This focusing geometry reduces detrimental nonlinear beam distortions and enhances energy deposition within the medium, localized at the focal spot. We observe remarkable postcollapse dynamics of elongated cavitation bubbles with high-speed ejection of microbubbles out of the laser focal region. Bubbles are ejected along the laser axis in both directions (away and towards the laser). The initial shape of the cavitation bubble is also seen to either enhance or completely suppress jet formation during collapse. In the absence of jetting, microbubble ejection occurs orthogonal to the laser propagation axis.
We report on the generation of two optical-cycle, carrier-envelope phase-stable pulses with energy of 15 μJ at central wavelength of 2 μm. Pulses of 15 fs (2.3 optical cycles) duration are obtained by difference-frequency generation, which at the same time provides passive carrier-envelope phase stabilization, and noncollinear optical parametric amplification in beta-barium borate crystal, which is shown to provide broad phase-matching bandwidth if seeded by pulses in the 1.6-2.6 μm wavelength range. Pulse compression is achieved by means of a simple propagation through the optical setup and by precisely controlling the initial chirp of the pulses to be frequency downconverted.
We report on the generation of approximately 30-fs ultraviolet pulses with approximately 10 microJ energy by means of four-wave optical parametric chirped pulse amplification in fused silica. The four-wave optical parametric amplifier is pumped by the second-harmonic of the Ti:sapphire laser and is seeded by visible broadband chirped signal pulses. The idler pulses are produced in the ultraviolet by four-wave mixing and are compressed in a medium with normal group velocity dispersion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.