During development, different cell fates are generated by cell-cell interactions or by the asymmetric distribution of patterning molecules. Asymmetric inheritance is known to occur either through directed transport along actin microfilaments into one daughter cell or through capture of determinants by a region of the cortex inherited by one daughter. Here we report a third mechanism of asymmetric inheritance in a mollusc embryo. Different messenger RNAs associate with centrosomes in different cells and are subsequently distributed asymmetrically during division. The segregated mRNAs are diffusely distributed in the cytoplasm and then localize, in a microtubule-dependent manner, to the pericentriolar matrix. During division, they dissociate from the core mitotic centrosome and move by means of actin filaments to the presumptive animal daughter cell cortex. In experimental cells with two interphase centrosomes, mRNAs accumulate on the correct centrosome, indicating that differences between centrosomes control mRNA targeting. Blocking the accumulation of mRNAs on the centrosome shows that this event is required for subsequent cortical localization. These events produce a complex pattern of mRNA localization, in which different messages distinguish groups of cells with the same birth order rank and similar developmental potentials.
BackgroundCellular hypoxia, if severe enough, results usually in injury or cell death. Our research in this area has focused on the molecular mechanisms underlying hypoxic tissue injury to explore strategies to prevent injury or enhance tolerance. The current experiments were designed to determine the genetic basis for adaptation to long term low O2 environments.Methodology/Principal FindingsWith long term experimental selection over many generations, we obtained a Drosophila melanogaster strain that can live perpetually in extremely low, normally lethal, O2 condition (as low as 4% O2). This strain shows a dramatic phenotypic divergence from controls, including a decreased recovery time from anoxic stupor, a higher rate of O2 consumption in hypoxic conditions, and a decreased body size and mass due to decreased cell number and size. Expression arrays showed that about 4% of the Drosophila genome altered in expression and about half of the alteration was down-regulation. The contribution of some altered transcripts to hypoxia tolerance was examined by testing the survival of available corresponding P-element insertions (and their excisions) under extremely low O2 conditions. We found that down-regulation of several candidate genes including Best1, broad, CG7102, dunce, lin19-like and sec6 conferred severe hypoxia tolerance in Drosophila.Conclusions/SignificanceWe have identified a number of genes that play an important role in the survival of a selected Drosophila strain in extremely low O2 conditions, selected by decreasing O2 availability over many generations. Because of conservation of pathways, we believe that such genes are critical in hypoxia adaptation in physiological or pathological conditions not only in Drosophila but also in mammals.
Spiralian development is shared by several protostome phyla and characterized by regularities in early cleavage, fate map, and larva. Experimental evidence from multiple spiralian species implicates cells in the D quadrant lineage as the organizer of future axial development of the embryo. However, the mechanisms by which the D quadrant is specified differ between species with equal and unequal spiral cleavage. Equally cleaving mollusc embryos establish the D quadrant via cell-cell interactions between the micromeres and macromeres at the 24- to 36-cell stage. In unequally cleaving embryos, the D quadrant is established at the 4-cell stage via asymmetries in the first 2 cell divisions. We have begun to explore the molecular mechanisms of D quadrant patterning in spiralians. Previously, we showed that, in the unequally cleaving embryo of the mollusc Ilyanassa obsoleta, the MAPK pathway is activated and functionally required in 3D and also in the micromeres known to require a signal from 3D. Here, we examine the role of MAPK signaling in 4 spiralians with equal cleavage. In 3 equally cleaving molluscs, the chiton Chaetopleura, the limpet Tectura, and the snail Lymnaea, the MAPK pathway is activated in the 3D cell but not in the overlying micromeres. In the equally cleaving embryo of the polychaete annelid Hydroides, MAPK activation was not detected in the 3D macromere but was observed in one of its daughter cells, 4d. In addition, inhibiting Tectura MAPK activation disrupts differentiation of 3D and cells induced by it, supporting a functional role for MAPK in axis specification in equally cleaving spiralians. Thus, MAPK signaling may have a conserved role in the D quadrant organizer cell 3D in molluscs. However, there have been at least 2 evolutionary changes in the activation of the MAPK pathway during spiralian evolution. MAPK function in the Ilyanassa micromeres is a recent cooption and, since the divergence of annelids and molluscs, there has been a shift in onset of MAPK activation between 3D and 4d. We propose that this latter shift correlates with a change in the timing of specification of the secondary embryonic axis.
At least five animal phyla exhibit spiralian development, which is characterized by striking similarities in the geometry of the early cleavage pattern and the fate map of the blastula, along with similarities in larval morphology. Recent advances in reconstructing the phylogeny of spiralians and their relatives suggest that the common ancestor of a large clade of protostome phyla known as the Lophotrochozoa had spiralian development. In this minireview, I describe characteristics of spiralian development and some recent insights into its mechanisms and evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.