In many nonprimate mammalian species, cyclical regression of the corpus luteum (luteolysis) is caused by the episodic pulsatile secretion of uterine PGF2alpha, which acts either locally on the corpus luteum by a countercurrent mechanism or, in some species, via the systemic circulation. Hysterectomy in these nonprimate species causes maintenance of the corpora lutea, whereas in primates, removal of the uterus does not influence the cyclical regression of the corpus luteum. In several nonprimate species, the episodic pattern of uterine PGF2alpha secretion appears to be controlled indirectly by the ovarian steroid hormones estradiol-17beta and progesterone. It is proposed that, toward the end of the luteal phase, loss of progesterone action occurs both centrally in the hypothalamus and in the uterus due to the catalytic reduction (downregulation) of progesterone receptors by progesterone. Loss of progesterone action may permit the return of estrogen action, both centrally in the hypothalamus and peripherally in the uterus. Return of central estrogen action appears to cause the hypothalamic oxytocin pulse generator to alter its frequency and produce a series of intermittent episodes of oxytocin secretion. In the uterus, returning estrogen action concomitantly upregulates endometrial oxytocin receptors. The interaction of neurohypophysial oxytocin with oxytocin receptors in the endometrium evokes the secretion of luteolytic pulses of uterine PGF2alpha. Thus the uterus can be regarded as a transducer that converts intermittent neural signals from the hypothalamus, in the form of episodic oxytocin secretion, into luteolytic pulses of uterine PGF2alpha. In ruminants, portions of a finite store of luteal oxytocin are released synchronously by uterine PGF2alpha pulses. Luteal oxytocin in ruminants may thus serve to amplify neural oxytocin signals that are transduced by the uterus into pulses of PGF2alpha. Whether such amplification of episodic PGF2alpha pulses by luteal oxytocin is a necessary requirement for luteolysis in ruminants remains to be determined. Recently, oxytocin has been reported to be produced by the endometrium and myometrium of the sow, mare, and rat. It is possible that uterine production of oxytocin may act as a supplemental source of oxytocin during luteolysis in these species. In primates, oxytocin and its receptor and PGF2alpha and its receptor have been identified in the corpus luteum and/or ovary. Therefore, it is possible that oxytocin signals of ovarian and/or neural origin may be transduced locally at the ovarian level, thus explaining why luteolysis and ovarian cyclicity can proceed in the absence of the uterus in primates. However, it remains to be established whether the intraovarian process of luteolysis is mediated by arachidonic acid and/or its metabolite PGF2alpha and whether the central oxytocin pulse generator identified in nonprimate species plays a mediatory role during luteolysis in primates. Regardless of the mechanism, intraovarian luteolysis in primates (progesterone withdrawal) ...
Preclinical studies of chemoprevention drugs given in combination at low doses show remarkable efficacy in preventing adenomas with little additional toxicities, suggesting a strategy to improve risk to benefit ratios for preventing recurrent adenomas. Three hundred seventy-five patients with history of resected (≥3 mm) adenomas were randomly assigned to receive oral difluoromethylornithine (DFMO) 500 mg and sulindac 150 mg once daily or matched placebos for 36 months, stratified by use of low-dose aspirin (81 mg) at baseline and clinical site. Follow-up colonoscopy was done 3 years after randomization or off-study. Colorectal adenoma recurrence was compared among the groups with log-binomial regression. Comparing the outcome in patients receiving placebos to those receiving active intervention, (a) the recurrence of one or more adenomas was 41.1% and 12.3% (risk ratio, 0.30; 95% confidence interval, 0.18-0.49; P < 0.001); (b) 8.5% had one or more advanced adenomas, compared with 0.7% of patients (risk ratio, 0.085; 95% confidence interval, 0.011-0.65; P < 0.001); and (c) 17 (13.2%) patients had multiple adenomas (>1) at the final colonoscopy, compared with 1 (0.7%; risk ratio, 0.055; 0.0074-0.41; P < 0.001). Serious adverse events (grade ≥3) occurred in 8.2% of patients in the placebo group, compared with 11% in the active intervention group (P = 0.35). There was no significant difference in the proportion of patients reporting hearing changes from baseline. Recurrent adenomatous polyps can be markedly reduced by a combination of low oral doses of DFMO and sulindac and with few side effects.More than 50,000 people in the United States will die in 2007 from colorectal cancer. In the United States, cancer is the leading cause of death in people under age 74 years (1), and colorectal cancer is the second most common cause of cancer deaths after lung cancer (2). Colorectal cancer may be prevented by removal of precursor adenomas found during screening sigmoidoscopy or colonoscopy (3), although rates are variable and range from 30% to 90% depending highly on reimbursement policies (4, 5).Diet and inflammation have been associated with risk of colorectal cancer (6), and a series of clinical trials have been conducted to test the efficacy of individual dietary supplements or anti-inflammatory agents to prevent the incidence or recurrence of colon polyps (7-14). Unfortunately, these trials have not translated into significant changes in medical practice for prevention or management of colon cancer for a variety of reasons, including lack of efficacy, unacceptable toxicities, and the availability of competing strategies for risk reduction (15).Studies in rodent models have shown that combination chemoprevention strategies are often more effective than those using individual agents (16,17). Difluoromethylornithine (DFMO) has been identified as a potent inhibitor of intestinal and colon carcinogenesis in animal models, especially in combination with nonsteroidal anti-inflammatory drugs (18)(19)(20). DFMO and the n...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.