Magneto-rheological (MR) dampers are effective solutions in improving vehicle stability and passenger comfort. However, handling these dampers implies a strong effort in modeling and control. This research proposes an H 2 controller, based on a Takagi-Sugeno (T-S) fuzzy model, for a two-degrees-of-freedom (2-DOF) one-quarter vehicle semi-active suspension with an MR damper; a system with important applications in automotive industry. Regarding performance criteria (in frequency domain) handled herein, the developed controller considerably improves the passive suspension's efficiency. Moreover, nonlinear actuator dynamics usually avoided in reported work, is included in controller's synthesis; improving the relevance of research outcomes because the controller is synthesized from a closer-to-reality suspension model. Going further, outcomes of this research are compared (based on frequency domain performance criteria and a common time domain test) with reported work to highlight the outstanding results. H 2 controller is given in terms of quadratic Lyapunov stability theory and carried out by means of Linear Matrix Inequalities (LMI), and the command signal is applied via the Parallel Distributed Compensation (PDC) approach. A case of study, with real data, is developed and simulation work supports the results. The methodology applied herein can be extended to include other vehicle suspension's dynamics towards a general chassis control.
A fuzzy-H ∞ control, improved with weighting functions, has been designed and applied to a novel model of a one-half semiactive lateral vehicle (OHSLV) suspension. e herein contribution resides in the development and computation of an H ∞ controller with parallel distributed compensation (PDC) designed from a highly nonlinear system modelled via the Takagi-Sugeno (T-S) fuzzy approach. A fuzzy-H ∞ controller is synthesized for an OHSLV T-S fuzzy model of a suspension with two magnetorheological (MR) dampers including actuators' nonlinear dynamics. e realism of results has been improved by considering the MR damper's behaviours (viscoplasticity, hysteresis, and saturation) and the handling of the phase angle of the sinusoidal disturbance, not included in other reported work. Time-domain tests remark transient time achievements, whereas precise performance criterion indices in the frequency domain are employed to assess the generated outcomes. e proposed solution complies with all performance criteria compared with a benchmark passive average suspension that fails in satisfying most of the performance criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.