LXCat is an open‐access platform (http://www.lxcat.net) for curating data needed for modeling the electron and ion components of technological plasmas. The data types presently supported on LXCat are scattering cross sections and swarm/transport parameters, ion‐neutral interaction potentials, and optical oscillator strengths. Twenty‐four databases contributed by different groups around the world can be accessed on LXCat. New contributors are welcome; the database contributors retain ownership and are responsible for the contents and maintenance of the individual databases. This article summarizes the present status of the project.
The pulsed Townsend technique has been used to measure the electron drift velocity, the density-normalized effective ionization coefficient, the density-normalized longitudinal diffusion coefficient NDL, and the `characteristic energy' of electrons DL/K, in CO2 and its mixtures with SF6 over a wide range of the density-reduced field strength E/N, from 100 to 700 Td (1 Townsend = 10−17 V cm2). The SF6 content in the mixture was varied between 2% and 70%. It was observed that for small concentrations (2–5%) of SF6 in the mixtures, the electron drift velocity is relatively close to that for pure CO2. A similar behaviour was observed for the longitudinal diffusion coefficients. In contrast, the influence of SF6 in the mixture is strongly apparent in the values for the effective ionization coefficients. From the latter parameter, the critical field strength E/Ncrit for each SF6 concentration could be derived, and it was found that its value is smaller than that measured for the SF6–N2 mixtures.
The Virtual Atomic and Molecular Data Centre (VAMDC) Consortium is a worldwide consortium which federates atomic and molecular databases through an e-science infrastructure and an organisation to support this activity. About 90% of the inter-connected databases handle data that are used for the interpretation of astronomical spectra and for modelling in many fields of astrophysics. Recently the VAMDC Consortium has connected databases from the radiation damage and the plasma communities, as well as promoting the publication of data from Indian institutes. This paper describes how the VAMDC Consortium is organised for the optimal distribution of atomic and molecular data for scientific research. It is noted that the VAMDC Consortium strongly advocates that authors of research papers using data cite the original experimental and theoretical papers as well as the relevant databases.
The drift velocity of electrons in mixtures of gaseous water and helium is measured over the range of reduced electric fields 0.1-300 Td using a pulsed-Townsend technique. Admixtures of 1% and 2% water to helium are found to produce negative differential conductivity (NDC), despite NDC being absent from the pure gases. The measured drift velocities are used as a further discriminative assessment on the accuracy and completeness of a recently proposed set of electron-water vapour cross-sections [K. F. Ness, R. E. Robson, M. J. Brunger, and R. D. White, J. Chem. Phys. 136, 024318 (2012)]. A refinement of the momentum transfer cross-section for electron-water vapour scattering is presented, which ensures self-consistency with the measured drift velocities in mixtures with helium to within approximately 5% over the range of reduced fields considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.