Following adeno-associated virus (AAV)-mediated transduction, cellular RNA preparations can be contaminated with AAV single-stranded DNA. The single-stranded DNA genome of recombinant AAV vectors can serve as an efficient, but undesirable, template for traditional reverse transcriptase-polymerase chain reaction (RT-PCR) methods. Consequently, recombinant AAV gene therapy presents a unique challenge to the design of sensitive and reliable methods to detect vector-derived mRNA. Several methods have been proposed to reduce the presence of single-and doublestranded vector DNA without compromising RNA specificity. For example, DNase I, although widely used, can be ineffective at completely removing the AAV single-stranded DNA genome. We have developed a sensitive real-time RNA-Specific reverse transcriptase PCR (RS-PCR) method that is independent of DNase I treatment. The RS-PCR method relies on the generation of a first-strand cDNA template using a primer with a linker sequence, X, at the 5 0 -end such that synthesis of second-strand cDNA incorporates the X-linker sequence into the cDNA template. The RS-PCR then utilizes forward and reverse primers targeting AAV vector sequence and the X-primer site, respectively, while a vector-specific Taqman probe makes sensitive real-time detection possible. We present data to validate the sensitivity and RNA specificity of the RS-PCR method and propose two unique endogenous control strategies by monitoring expression of both b-glucuronidase and endogenous cystic fibrosis transmembrane conductance regulator (CFTR). Finally, we demonstrate the utility of this new RS-PCR method in detecting recombinant AAV-CFTR expression, including, an in vitro transduction assay and methods to support both preclinical and clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.