The viscosity of liquids governs crucial physical and engineering phenomena, ranging from diffusion and transport processes of nutrients and chemicals, to the generation of friction and the physics of damping.Engineering fluids frequently experience local conditions that change their bulk rheological properties.While viscosity data can easily be acquired using conventional rheometers, the results are not always applicable to fluids under engineering conditions. This is particularly the case for fluids being sheared at high pressure under severe confinement, which experience very high shear stresses and often show extensive shear thinning. There is a lack of suitable methods for measuring fluid viscosity under such conditions. This work describes a novel in situ viscosity measurement technique to fill this gap. It involves the quantification of the fluorescence lifetime of a fluorescent dye that is sensitive to viscosity.The capability of the developed technique is verified by taking measurements in submicron thick films of two model fluids confined in a ball on flat contact. Viscosity measurements were successfully performed at pressures up to 1.2 GPa and shear rates up to 10 5 s À1 . Spatial heterogeneity in viscosity caused by variations in pressure within the thin fluid film could be observed using the technique. It was also possible to detect differences in the rheological responses of a Newtonian and a non-Newtonian fluid.These first in situ high pressure, high shear viscosity measurements demonstrate the versatility of the proposed technique in providing information on the viscosity in conditions where contemporary techniques are insufficient. More importantly it highlights the complexity of the rheology of engineering fluids and provides a means of verifying existing theories by performing in situ measurements.Information on local viscosity is crucial for understanding the physics of confined fluids and to facilitate improvements in engineering technology. Fig. 8 (a) Variation of ThT lifetime in (a) glycerol and (b) IGEPAL; confined in a point contact at various shear rates. All lines are for guidance only. 99592 | RSC Adv., 2015, 5, 99585-99593 This journal is
Microviscosity of PAO 8 measured from the fluorescence anisotropy of Nile red ηA compared to the corrected area-averaged viscosity from friction η* and high-pressure rheology η.
Lubricant viscosity is a key driver in both the tribological performance and energy efficiency of a lubricated contact. Elastohydrodynamic (EHD) lubrication produces very high pressures and shear rates, conditions hard to replicate using conventional rheometry. In situ rheological measurements within a typical contact are therefore important to investigate how a fluid behaves under such conditions. Molecular rotors provide such an opportunity to extract the local viscosity of a fluid under EHD lubrication. The validity of such an application is shown by comparing local viscosity measurements obtained using molecular rotors and fluorescence lifetime measurements, in a model EHD lubricant, with reference measurements using conventional rheometry techniques. The appropriateness of standard methods used in tribology for high-pressure rheometry (combining friction and film thickness measurements) has been verified when the flow of EHD lubricant is homogeneous and linear. A simple procedure for calibrating the fluorescence lifetime of molecular rotors at elevated pressure for viscosity measurements is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.