The paper deals with the order of convergence of the Laurent polynomials of Hermite-Fejér interpolation on the unit circle with nodal system, thenroots of a complex number with modulus one. The supremum norm of the error of interpolation is obtained for analytic functions as well as the corresponding asymptotic constants.
The paper is devoted to study the Hermite interpolation problem on the unit circle. The interpolation conditions prefix the values of the polynomial and its first two derivatives at the nodal points and the nodal system is constituted by complex numbers equally spaced on the unit circle. We solve the problem in the space of Laurent polynomials by giving two different expressions for the interpolation polynomial. The first one is given in terms of the natural basis of Laurent polynomials and the remarkable fact is that the coefficients can be computed in an
easy and efficient way by means of the Fast Fourier Transform (FFT). The second expression is a barycentric formula, which is very suitable for computational purposes.
This paper is devoted to Hermite interpolation with Chebyshev-Lobatto and Chebyshev-Radau nodal points. The aim of this piece of work is to establish the rate of convergence for some types of smooth functions. Although the rate of convergence is similar to that of Lagrange interpolation, taking into account the asymptotic constants that we obtain, the use of this method is justified and it is very suitable when we dispose of the appropriate information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.